Precalculus Examples

Solve for x 2e^(3x)=1
2e3x=1
Step 1
Divide each term in 2e3x=1 by 2 and simplify.
Tap for more steps...
Step 1.1
Divide each term in 2e3x=1 by 2.
2e3x2=12
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 1.2.1.1
Cancel the common factor.
2e3x2=12
Step 1.2.1.2
Divide e3x by 1.
e3x=12
e3x=12
e3x=12
e3x=12
Step 2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(e3x)=ln(12)
Step 3
Expand the left side.
Tap for more steps...
Step 3.1
Expand ln(e3x) by moving 3x outside the logarithm.
3xln(e)=ln(12)
Step 3.2
The natural logarithm of e is 1.
3x1=ln(12)
Step 3.3
Multiply 3 by 1.
3x=ln(12)
3x=ln(12)
Step 4
Divide each term in 3x=ln(12) by 3 and simplify.
Tap for more steps...
Step 4.1
Divide each term in 3x=ln(12) by 3.
3x3=ln(12)3
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of 3.
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
3x3=ln(12)3
Step 4.2.1.2
Divide x by 1.
x=ln(12)3
x=ln(12)3
x=ln(12)3
x=ln(12)3
Step 5
The result can be shown in multiple forms.
Exact Form:
x=ln(12)3
Decimal Form:
x=-0.23104906
 [x2  12  π  xdx ]