Precalculus Examples

Solve for x 14e^(3x+2)=560
14e3x+2=560
Step 1
Divide each term in 14e3x+2=560 by 14 and simplify.
Tap for more steps...
Step 1.1
Divide each term in 14e3x+2=560 by 14.
14e3x+214=56014
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Cancel the common factor of 14.
Tap for more steps...
Step 1.2.1.1
Cancel the common factor.
14e3x+214=56014
Step 1.2.1.2
Divide e3x+2 by 1.
e3x+2=56014
e3x+2=56014
e3x+2=56014
Step 1.3
Simplify the right side.
Tap for more steps...
Step 1.3.1
Divide 560 by 14.
e3x+2=40
e3x+2=40
e3x+2=40
Step 2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(e3x+2)=ln(40)
Step 3
Expand the left side.
Tap for more steps...
Step 3.1
Expand ln(e3x+2) by moving 3x+2 outside the logarithm.
(3x+2)ln(e)=ln(40)
Step 3.2
The natural logarithm of e is 1.
(3x+2)1=ln(40)
Step 3.3
Multiply 3x+2 by 1.
3x+2=ln(40)
3x+2=ln(40)
Step 4
Subtract 2 from both sides of the equation.
3x=ln(40)-2
Step 5
Divide each term in 3x=ln(40)-2 by 3 and simplify.
Tap for more steps...
Step 5.1
Divide each term in 3x=ln(40)-2 by 3.
3x3=ln(40)3+-23
Step 5.2
Simplify the left side.
Tap for more steps...
Step 5.2.1
Cancel the common factor of 3.
Tap for more steps...
Step 5.2.1.1
Cancel the common factor.
3x3=ln(40)3+-23
Step 5.2.1.2
Divide x by 1.
x=ln(40)3+-23
x=ln(40)3+-23
x=ln(40)3+-23
Step 5.3
Simplify the right side.
Tap for more steps...
Step 5.3.1
Move the negative in front of the fraction.
x=ln(40)3-23
x=ln(40)3-23
x=ln(40)3-23
Step 6
The result can be shown in multiple forms.
Exact Form:
x=ln(40)3-23
Decimal Form:
x=0.56295981
 [x2  12  π  xdx ]