Precalculus Examples

Solve for x log base x of 125=3
logx(125)=3
Step 1
Rewrite logx(125)=3 in exponential form using the definition of a logarithm. If x and b are positive real numbers and b1, then logb(x)=y is equivalent to by=x.
x3=125
Step 2
Solve for x.
Tap for more steps...
Step 2.1
Subtract 125 from both sides of the equation.
x3-125=0
Step 2.2
Factor the left side of the equation.
Tap for more steps...
Step 2.2.1
Rewrite 125 as 53.
x3-53=0
Step 2.2.2
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2) where a=x and b=5.
(x-5)(x2+x5+52)=0
Step 2.2.3
Simplify.
Tap for more steps...
Step 2.2.3.1
Move 5 to the left of x.
(x-5)(x2+5x+52)=0
Step 2.2.3.2
Raise 5 to the power of 2.
(x-5)(x2+5x+25)=0
(x-5)(x2+5x+25)=0
(x-5)(x2+5x+25)=0
Step 2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x-5=0
x2+5x+25=0
Step 2.4
Set x-5 equal to 0 and solve for x.
Tap for more steps...
Step 2.4.1
Set x-5 equal to 0.
x-5=0
Step 2.4.2
Add 5 to both sides of the equation.
x=5
x=5
Step 2.5
Set x2+5x+25 equal to 0 and solve for x.
Tap for more steps...
Step 2.5.1
Set x2+5x+25 equal to 0.
x2+5x+25=0
Step 2.5.2
Solve x2+5x+25=0 for x.
Tap for more steps...
Step 2.5.2.1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 2.5.2.2
Substitute the values a=1, b=5, and c=25 into the quadratic formula and solve for x.
-5±52-4(125)21
Step 2.5.2.3
Simplify.
Tap for more steps...
Step 2.5.2.3.1
Simplify the numerator.
Tap for more steps...
Step 2.5.2.3.1.1
Raise 5 to the power of 2.
x=-5±25-412521
Step 2.5.2.3.1.2
Multiply -4125.
Tap for more steps...
Step 2.5.2.3.1.2.1
Multiply -4 by 1.
x=-5±25-42521
Step 2.5.2.3.1.2.2
Multiply -4 by 25.
x=-5±25-10021
x=-5±25-10021
Step 2.5.2.3.1.3
Subtract 100 from 25.
x=-5±-7521
Step 2.5.2.3.1.4
Rewrite -75 as -1(75).
x=-5±-17521
Step 2.5.2.3.1.5
Rewrite -1(75) as -175.
x=-5±-17521
Step 2.5.2.3.1.6
Rewrite -1 as i.
x=-5±i7521
Step 2.5.2.3.1.7
Rewrite 75 as 523.
Tap for more steps...
Step 2.5.2.3.1.7.1
Factor 25 out of 75.
x=-5±i25(3)21
Step 2.5.2.3.1.7.2
Rewrite 25 as 52.
x=-5±i52321
x=-5±i52321
Step 2.5.2.3.1.8
Pull terms out from under the radical.
x=-5±i(53)21
Step 2.5.2.3.1.9
Move 5 to the left of i.
x=-5±5i321
x=-5±5i321
Step 2.5.2.3.2
Multiply 2 by 1.
x=-5±5i32
x=-5±5i32
Step 2.5.2.4
The final answer is the combination of both solutions.
x=-5-5i32,-5+5i32
x=-5-5i32,-5+5i32
x=-5-5i32,-5+5i32
Step 2.6
The final solution is all the values that make (x-5)(x2+5x+25)=0 true.
x=5,-5-5i32,-5+5i32
x=5,-5-5i32,-5+5i32
logx(125)=3
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]