Enter a problem...
Precalculus Examples
1x2+3x+2-1x2-2x-31x2+3x+2−1x2−2x−3
Step 1
Step 1.1
Factor x2+3x+2x2+3x+2 using the AC method.
Step 1.1.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is 22 and whose sum is 33.
1,21,2
Step 1.1.2
Write the factored form using these integers.
1(x+1)(x+2)-1x2-2x-31(x+1)(x+2)−1x2−2x−3
1(x+1)(x+2)-1x2-2x-31(x+1)(x+2)−1x2−2x−3
Step 1.2
Factor x2-2x-3x2−2x−3 using the AC method.
Step 1.2.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is -3−3 and whose sum is -2−2.
-3,1−3,1
Step 1.2.2
Write the factored form using these integers.
1(x+1)(x+2)-1(x-3)(x+1)1(x+1)(x+2)−1(x−3)(x+1)
1(x+1)(x+2)-1(x-3)(x+1)1(x+1)(x+2)−1(x−3)(x+1)
1(x+1)(x+2)-1(x-3)(x+1)1(x+1)(x+2)−1(x−3)(x+1)
Step 2
To write 1(x+1)(x+2)1(x+1)(x+2) as a fraction with a common denominator, multiply by x-3x-3x−3x−3.
1(x+1)(x+2)⋅x-3x-3-1(x-3)(x+1)1(x+1)(x+2)⋅x−3x−3−1(x−3)(x+1)
Step 3
To write -1(x-3)(x+1)−1(x−3)(x+1) as a fraction with a common denominator, multiply by x+2x+2x+2x+2.
1(x+1)(x+2)⋅x-3x-3-1(x-3)(x+1)⋅x+2x+21(x+1)(x+2)⋅x−3x−3−1(x−3)(x+1)⋅x+2x+2
Step 4
Step 4.1
Multiply 1(x+1)(x+2)1(x+1)(x+2) by x-3x-3x−3x−3.
x-3(x+1)(x+2)(x-3)-1(x-3)(x+1)⋅x+2x+2x−3(x+1)(x+2)(x−3)−1(x−3)(x+1)⋅x+2x+2
Step 4.2
Multiply 1(x-3)(x+1)1(x−3)(x+1) by x+2x+2x+2x+2.
x-3(x+1)(x+2)(x-3)-x+2(x-3)(x+1)(x+2)x−3(x+1)(x+2)(x−3)−x+2(x−3)(x+1)(x+2)
Step 4.3
Reorder the factors of (x-3)(x+1)(x+2)(x−3)(x+1)(x+2).
x-3(x+1)(x+2)(x-3)-x+2(x+1)(x+2)(x-3)x−3(x+1)(x+2)(x−3)−x+2(x+1)(x+2)(x−3)
x-3(x+1)(x+2)(x-3)-x+2(x+1)(x+2)(x-3)x−3(x+1)(x+2)(x−3)−x+2(x+1)(x+2)(x−3)
Step 5
Combine the numerators over the common denominator.
x-3-(x+2)(x+1)(x+2)(x-3)x−3−(x+2)(x+1)(x+2)(x−3)
Step 6
Step 6.1
Apply the distributive property.
x-3-x-1⋅2(x+1)(x+2)(x-3)x−3−x−1⋅2(x+1)(x+2)(x−3)
Step 6.2
Multiply -1−1 by 22.
x-3-x-2(x+1)(x+2)(x-3)x−3−x−2(x+1)(x+2)(x−3)
Step 6.3
Subtract xx from xx.
0-3-2(x+1)(x+2)(x-3)0−3−2(x+1)(x+2)(x−3)
Step 6.4
Subtract 33 from 00.
-3-2(x+1)(x+2)(x-3)−3−2(x+1)(x+2)(x−3)
Step 6.5
Subtract 22 from -3−3.
-5(x+1)(x+2)(x-3)−5(x+1)(x+2)(x−3)
-5(x+1)(x+2)(x-3)−5(x+1)(x+2)(x−3)
Step 7
Move the negative in front of the fraction.
-5(x+1)(x+2)(x-3)−5(x+1)(x+2)(x−3)