Enter a problem...
Precalculus Examples
√-7√-28√−7√−28
Step 1
Rewrite -7−7 as -1(7)−1(7).
√-1(7)√-28√−1(7)√−28
Step 2
Rewrite √-1(7)√−1(7) as √-1⋅√7√−1⋅√7.
√-1⋅√7√-28√−1⋅√7√−28
Step 3
Rewrite √-1√−1 as ii.
i⋅√7√-28i⋅√7√−28
Step 4
Rewrite -28−28 as -1(28)−1(28).
i⋅√7√-1(28)i⋅√7√−1(28)
Step 5
Rewrite √-1(28)√−1(28) as √-1⋅√28√−1⋅√28.
i⋅√7(√-1⋅√28)i⋅√7(√−1⋅√28)
Step 6
Rewrite √-1√−1 as ii.
i⋅√7(i⋅√28)i⋅√7(i⋅√28)
Step 7
Step 7.1
Factor 44 out of 2828.
i√7(i⋅√4(7))i√7(i⋅√4(7))
Step 7.2
Rewrite 44 as 2222.
i√7(i⋅√22⋅7)i√7(i⋅√22⋅7)
i√7(i⋅√22⋅7)i√7(i⋅√22⋅7)
Step 8
Pull terms out from under the radical.
i√7(i⋅(2√7))i√7(i⋅(2√7))
Step 9
Move 22 to the left of ii.
i√7(2⋅i√7)i√7(2⋅i√7)
Step 10
Step 10.1
Raise ii to the power of 11.
√7(2(i1i)√7)√7(2(i1i)√7)
Step 10.2
Raise ii to the power of 11.
√7(2(i1i1)√7)√7(2(i1i1)√7)
Step 10.3
Use the power rule aman=am+naman=am+n to combine exponents.
√7(2i1+1√7)√7(2i1+1√7)
Step 10.4
Add 11 and 11.
√7(2i2√7)√7(2i2√7)
Step 10.5
Raise √7√7 to the power of 11.
2i2(√71√7)2i2(√71√7)
Step 10.6
Raise √7√7 to the power of 11.
2i2(√71√71)2i2(√71√71)
Step 10.7
Use the power rule aman=am+naman=am+n to combine exponents.
2i2√71+12i2√71+1
Step 10.8
Add 11 and 11.
2i2√722i2√72
2i2√722i2√72
Step 11
Rewrite i2i2 as -1−1.
2⋅-1√722⋅−1√72
Step 12
Multiply 22 by -1−1.
-2√72−2√72
Step 13
Step 13.1
Use n√ax=axnn√ax=axn to rewrite √7√7 as 712712.
-2(712)2−2(712)2
Step 13.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
-2⋅712⋅2−2⋅712⋅2
Step 13.3
Combine 1212 and 22.
-2⋅722−2⋅722
Step 13.4
Cancel the common factor of 22.
Step 13.4.1
Cancel the common factor.
-2⋅722
Step 13.4.2
Rewrite the expression.
-2⋅71
-2⋅71
Step 13.5
Evaluate the exponent.
-2⋅7
-2⋅7
Step 14
Multiply -2 by 7.
-14