Precalculus Examples

Simplify ((xy^-2z^-3)/(x^2y^3z^-4))^-3
(xy-2z-3x2y3z-4)-3
Step 1
Move y-2 to the denominator using the negative exponent rule b-n=1bn.
(xz-3x2y3z-4y2)-3
Step 2
Multiply y3 by y2 by adding the exponents.
Tap for more steps...
Step 2.1
Move y2.
(xz-3x2(y2y3)z-4)-3
Step 2.2
Use the power rule aman=am+n to combine exponents.
(xz-3x2y2+3z-4)-3
Step 2.3
Add 2 and 3.
(xz-3x2y5z-4)-3
(xz-3x2y5z-4)-3
Step 3
Move z-4 to the numerator using the negative exponent rule 1b-n=bn.
(xz-3z4x2y5)-3
Step 4
Simplify the numerator.
Tap for more steps...
Step 4.1
Multiply z-3 by z4 by adding the exponents.
Tap for more steps...
Step 4.1.1
Move z4.
(x(z4z-3)x2y5)-3
Step 4.1.2
Use the power rule aman=am+n to combine exponents.
(xz4-3x2y5)-3
Step 4.1.3
Subtract 3 from 4.
(xz1x2y5)-3
(xz1x2y5)-3
Step 4.2
Simplify xz1.
(xzx2y5)-3
(xzx2y5)-3
Step 5
Cancel the common factor of x and x2.
Tap for more steps...
Step 5.1
Factor x out of xz.
(x(z)x2y5)-3
Step 5.2
Cancel the common factors.
Tap for more steps...
Step 5.2.1
Factor x out of x2y5.
(x(z)x(xy5))-3
Step 5.2.2
Cancel the common factor.
(xzx(xy5))-3
Step 5.2.3
Rewrite the expression.
(zxy5)-3
(zxy5)-3
(zxy5)-3
Step 6
Change the sign of the exponent by rewriting the base as its reciprocal.
(xy5z)3
Step 7
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 7.1
Apply the product rule to xy5z.
(xy5)3z3
Step 7.2
Apply the product rule to xy5.
x3(y5)3z3
x3(y5)3z3
Step 8
Multiply the exponents in (y5)3.
Tap for more steps...
Step 8.1
Apply the power rule and multiply exponents, (am)n=amn.
x3y53z3
Step 8.2
Multiply 5 by 3.
x3y15z3
x3y15z3
 [x2  12  π  xdx ]