Precalculus Examples

Simplify (sec(x)-1)(sec(x)+1)
(sec(x)-1)(sec(x)+1)
Step 1
Expand (sec(x)-1)(sec(x)+1) using the FOIL Method.
Tap for more steps...
Step 1.1
Apply the distributive property.
sec(x)(sec(x)+1)-1(sec(x)+1)
Step 1.2
Apply the distributive property.
sec(x)sec(x)+sec(x)1-1(sec(x)+1)
Step 1.3
Apply the distributive property.
sec(x)sec(x)+sec(x)1-1sec(x)-11
sec(x)sec(x)+sec(x)1-1sec(x)-11
Step 2
Simplify terms.
Tap for more steps...
Step 2.1
Combine the opposite terms in sec(x)sec(x)+sec(x)1-1sec(x)-11.
Tap for more steps...
Step 2.1.1
Reorder the factors in the terms sec(x)1 and -1sec(x).
sec(x)sec(x)+1sec(x)-1sec(x)-11
Step 2.1.2
Subtract 1sec(x) from 1sec(x).
sec(x)sec(x)+0-11
Step 2.1.3
Add sec(x)sec(x) and 0.
sec(x)sec(x)-11
sec(x)sec(x)-11
Step 2.2
Simplify each term.
Tap for more steps...
Step 2.2.1
Multiply sec(x)sec(x).
Tap for more steps...
Step 2.2.1.1
Raise sec(x) to the power of 1.
sec1(x)sec(x)-11
Step 2.2.1.2
Raise sec(x) to the power of 1.
sec1(x)sec1(x)-11
Step 2.2.1.3
Use the power rule aman=am+n to combine exponents.
sec(x)1+1-11
Step 2.2.1.4
Add 1 and 1.
sec2(x)-11
sec2(x)-11
Step 2.2.2
Multiply -1 by 1.
sec2(x)-1
sec2(x)-1
sec2(x)-1
Step 3
Apply pythagorean identity.
tan2(x)
(sec(x)-1)(sec(x)+1)
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]