Enter a problem...
Precalculus Examples
ln(x−4)+ln(x+5)=1
Step 1
Step 1.1
Use the product property of logarithms, logb(x)+logb(y)=logb(xy).
ln((x−4)(x+5))=1
Step 1.2
Expand (x−4)(x+5) using the FOIL Method.
Step 1.2.1
Apply the distributive property.
ln(x(x+5)−4(x+5))=1
Step 1.2.2
Apply the distributive property.
ln(x⋅x+x⋅5−4(x+5))=1
Step 1.2.3
Apply the distributive property.
ln(x⋅x+x⋅5−4x−4⋅5)=1
ln(x⋅x+x⋅5−4x−4⋅5)=1
Step 1.3
Simplify and combine like terms.
Step 1.3.1
Simplify each term.
Step 1.3.1.1
Multiply x by x.
ln(x2+x⋅5−4x−4⋅5)=1
Step 1.3.1.2
Move 5 to the left of x.
ln(x2+5⋅x−4x−4⋅5)=1
Step 1.3.1.3
Multiply −4 by 5.
ln(x2+5x−4x−20)=1
ln(x2+5x−4x−20)=1
Step 1.3.2
Subtract 4x from 5x.
ln(x2+x−20)=1
ln(x2+x−20)=1
ln(x2+x−20)=1
Step 2
To solve for x, rewrite the equation using properties of logarithms.
eln(x2+x−20)=e1
Step 3
Rewrite ln(x2+x−20)=1 in exponential form using the definition of a logarithm. If x and b are positive real numbers and b≠1, then logb(x)=y is equivalent to by=x.
e1=x2+x−20
Step 4
Step 4.1
Rewrite the equation as x2+x−20=e1.
x2+x−20=e
Step 4.2
Subtract e from both sides of the equation.
x2+x−20−e=0
Step 4.3
Use the quadratic formula to find the solutions.
−b±√b2−4(ac)2a
Step 4.4
Substitute the values a=1, b=1, and c=−20−e into the quadratic formula and solve for x.
−1±√12−4⋅(1⋅(−20−e))2⋅1
Step 4.5
Simplify.
Step 4.5.1
Simplify the numerator.
Step 4.5.1.1
One to any power is one.
x=−1±√1−4⋅1⋅(−20−e)2⋅1
Step 4.5.1.2
Multiply −4 by 1.
x=−1±√1−4⋅(−20−e)2⋅1
Step 4.5.1.3
Apply the distributive property.
x=−1±√1−4⋅−20−4(−e)2⋅1
Step 4.5.1.4
Multiply −4 by −20.
x=−1±√1+80−4(−e)2⋅1
Step 4.5.1.5
Multiply −1 by −4.
x=−1±√1+80+4e2⋅1
Step 4.5.1.6
Add 1 and 80.
x=−1±√81+4e2⋅1
x=−1±√81+4e2⋅1
Step 4.5.2
Multiply 2 by 1.
x=−1±√81+4e2
x=−1±√81+4e2
Step 4.6
The final answer is the combination of both solutions.
x=−1−√81+4e2,−1+√81+4e2
x=−1−√81+4e2,−1+√81+4e2
Step 5
Exclude the solutions that do not make ln(x−4)+ln(x+5)=1 true.
x=−1−√81+4e2
Step 6
The result can be shown in multiple forms.
Exact Form:
x=−1−√81+4e2
Decimal Form:
x=4.29252353…