Precalculus Examples

Solve for x natural log of x-4+ natural log of x+5=1
ln(x4)+ln(x+5)=1
Step 1
Simplify the left side.
Tap for more steps...
Step 1.1
Use the product property of logarithms, logb(x)+logb(y)=logb(xy).
ln((x4)(x+5))=1
Step 1.2
Expand (x4)(x+5) using the FOIL Method.
Tap for more steps...
Step 1.2.1
Apply the distributive property.
ln(x(x+5)4(x+5))=1
Step 1.2.2
Apply the distributive property.
ln(xx+x54(x+5))=1
Step 1.2.3
Apply the distributive property.
ln(xx+x54x45)=1
ln(xx+x54x45)=1
Step 1.3
Simplify and combine like terms.
Tap for more steps...
Step 1.3.1
Simplify each term.
Tap for more steps...
Step 1.3.1.1
Multiply x by x.
ln(x2+x54x45)=1
Step 1.3.1.2
Move 5 to the left of x.
ln(x2+5x4x45)=1
Step 1.3.1.3
Multiply 4 by 5.
ln(x2+5x4x20)=1
ln(x2+5x4x20)=1
Step 1.3.2
Subtract 4x from 5x.
ln(x2+x20)=1
ln(x2+x20)=1
ln(x2+x20)=1
Step 2
To solve for x, rewrite the equation using properties of logarithms.
eln(x2+x20)=e1
Step 3
Rewrite ln(x2+x20)=1 in exponential form using the definition of a logarithm. If x and b are positive real numbers and b1, then logb(x)=y is equivalent to by=x.
e1=x2+x20
Step 4
Solve for x.
Tap for more steps...
Step 4.1
Rewrite the equation as x2+x20=e1.
x2+x20=e
Step 4.2
Subtract e from both sides of the equation.
x2+x20e=0
Step 4.3
Use the quadratic formula to find the solutions.
b±b24(ac)2a
Step 4.4
Substitute the values a=1, b=1, and c=20e into the quadratic formula and solve for x.
1±124(1(20e))21
Step 4.5
Simplify.
Tap for more steps...
Step 4.5.1
Simplify the numerator.
Tap for more steps...
Step 4.5.1.1
One to any power is one.
x=1±141(20e)21
Step 4.5.1.2
Multiply 4 by 1.
x=1±14(20e)21
Step 4.5.1.3
Apply the distributive property.
x=1±14204(e)21
Step 4.5.1.4
Multiply 4 by 20.
x=1±1+804(e)21
Step 4.5.1.5
Multiply 1 by 4.
x=1±1+80+4e21
Step 4.5.1.6
Add 1 and 80.
x=1±81+4e21
x=1±81+4e21
Step 4.5.2
Multiply 2 by 1.
x=1±81+4e2
x=1±81+4e2
Step 4.6
The final answer is the combination of both solutions.
x=181+4e2,1+81+4e2
x=181+4e2,1+81+4e2
Step 5
Exclude the solutions that do not make ln(x4)+ln(x+5)=1 true.
x=181+4e2
Step 6
The result can be shown in multiple forms.
Exact Form:
x=181+4e2
Decimal Form:
x=4.29252353
 x2  12  π  xdx