Precalculus Examples

Solve for x 8(3^(6-x))=40
8(36-x)=408(36x)=40
Step 1
Divide each term in 836-x=40836x=40 by 88 and simplify.
Tap for more steps...
Step 1.1
Divide each term in 836-x=40836x=40 by 88.
836-x8=408836x8=408
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Cancel the common factor of 88.
Tap for more steps...
Step 1.2.1.1
Cancel the common factor.
836-x8=408
Step 1.2.1.2
Divide 36-x by 1.
36-x=408
36-x=408
36-x=408
Step 1.3
Simplify the right side.
Tap for more steps...
Step 1.3.1
Divide 40 by 8.
36-x=5
36-x=5
36-x=5
Step 2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(36-x)=ln(5)
Step 3
Expand ln(36-x) by moving 6-x outside the logarithm.
(6-x)ln(3)=ln(5)
Step 4
Simplify the left side.
Tap for more steps...
Step 4.1
Apply the distributive property.
6ln(3)-xln(3)=ln(5)
6ln(3)-xln(3)=ln(5)
Step 5
Reorder 6ln(3) and -xln(3).
-xln(3)+6ln(3)=ln(5)
Step 6
Move all the terms containing a logarithm to the left side of the equation.
-xln(3)+6ln(3)-ln(5)=0
Step 7
Move all terms not containing x to the right side of the equation.
Tap for more steps...
Step 7.1
Subtract 6ln(3) from both sides of the equation.
-xln(3)-ln(5)=-6ln(3)
Step 7.2
Add ln(5) to both sides of the equation.
-xln(3)=-6ln(3)+ln(5)
-xln(3)=-6ln(3)+ln(5)
Step 8
Divide each term in -xln(3)=-6ln(3)+ln(5) by -ln(3) and simplify.
Tap for more steps...
Step 8.1
Divide each term in -xln(3)=-6ln(3)+ln(5) by -ln(3).
-xln(3)-ln(3)=-6ln(3)-ln(3)+ln(5)-ln(3)
Step 8.2
Simplify the left side.
Tap for more steps...
Step 8.2.1
Dividing two negative values results in a positive value.
xln(3)ln(3)=-6ln(3)-ln(3)+ln(5)-ln(3)
Step 8.2.2
Cancel the common factor of ln(3).
Tap for more steps...
Step 8.2.2.1
Cancel the common factor.
xln(3)ln(3)=-6ln(3)-ln(3)+ln(5)-ln(3)
Step 8.2.2.2
Divide x by 1.
x=-6ln(3)-ln(3)+ln(5)-ln(3)
x=-6ln(3)-ln(3)+ln(5)-ln(3)
x=-6ln(3)-ln(3)+ln(5)-ln(3)
Step 8.3
Simplify the right side.
Tap for more steps...
Step 8.3.1
Simplify each term.
Tap for more steps...
Step 8.3.1.1
Cancel the common factor of ln(3).
Tap for more steps...
Step 8.3.1.1.1
Cancel the common factor.
x=-6ln(3)-ln(3)+ln(5)-ln(3)
Step 8.3.1.1.2
Rewrite the expression.
x=-6-1+ln(5)-ln(3)
Step 8.3.1.1.3
Move the negative one from the denominator of -6-1.
x=-1-6+ln(5)-ln(3)
x=-1-6+ln(5)-ln(3)
Step 8.3.1.2
Rewrite -1-6 as --6.
x=--6+ln(5)-ln(3)
Step 8.3.1.3
Multiply -1 by -6.
x=6+ln(5)-ln(3)
Step 8.3.1.4
Move the negative in front of the fraction.
x=6-ln(5)ln(3)
x=6-ln(5)ln(3)
x=6-ln(5)ln(3)
x=6-ln(5)ln(3)
Step 9
The result can be shown in multiple forms.
Exact Form:
x=6-ln(5)ln(3)
Decimal Form:
x=4.53502647
 [x2  12  π  xdx ]