Enter a problem...
Precalculus Examples
8(36-x)=408(36−x)=40
Step 1
Step 1.1
Divide each term in 8⋅36-x=408⋅36−x=40 by 88.
8⋅36-x8=4088⋅36−x8=408
Step 1.2
Simplify the left side.
Step 1.2.1
Cancel the common factor of 88.
Step 1.2.1.1
Cancel the common factor.
8⋅36-x8=408
Step 1.2.1.2
Divide 36-x by 1.
36-x=408
36-x=408
36-x=408
Step 1.3
Simplify the right side.
Step 1.3.1
Divide 40 by 8.
36-x=5
36-x=5
36-x=5
Step 2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(36-x)=ln(5)
Step 3
Expand ln(36-x) by moving 6-x outside the logarithm.
(6-x)ln(3)=ln(5)
Step 4
Step 4.1
Apply the distributive property.
6ln(3)-xln(3)=ln(5)
6ln(3)-xln(3)=ln(5)
Step 5
Reorder 6ln(3) and -xln(3).
-xln(3)+6ln(3)=ln(5)
Step 6
Move all the terms containing a logarithm to the left side of the equation.
-xln(3)+6ln(3)-ln(5)=0
Step 7
Step 7.1
Subtract 6ln(3) from both sides of the equation.
-xln(3)-ln(5)=-6ln(3)
Step 7.2
Add ln(5) to both sides of the equation.
-xln(3)=-6ln(3)+ln(5)
-xln(3)=-6ln(3)+ln(5)
Step 8
Step 8.1
Divide each term in -xln(3)=-6ln(3)+ln(5) by -ln(3).
-xln(3)-ln(3)=-6ln(3)-ln(3)+ln(5)-ln(3)
Step 8.2
Simplify the left side.
Step 8.2.1
Dividing two negative values results in a positive value.
xln(3)ln(3)=-6ln(3)-ln(3)+ln(5)-ln(3)
Step 8.2.2
Cancel the common factor of ln(3).
Step 8.2.2.1
Cancel the common factor.
xln(3)ln(3)=-6ln(3)-ln(3)+ln(5)-ln(3)
Step 8.2.2.2
Divide x by 1.
x=-6ln(3)-ln(3)+ln(5)-ln(3)
x=-6ln(3)-ln(3)+ln(5)-ln(3)
x=-6ln(3)-ln(3)+ln(5)-ln(3)
Step 8.3
Simplify the right side.
Step 8.3.1
Simplify each term.
Step 8.3.1.1
Cancel the common factor of ln(3).
Step 8.3.1.1.1
Cancel the common factor.
x=-6ln(3)-ln(3)+ln(5)-ln(3)
Step 8.3.1.1.2
Rewrite the expression.
x=-6-1+ln(5)-ln(3)
Step 8.3.1.1.3
Move the negative one from the denominator of -6-1.
x=-1⋅-6+ln(5)-ln(3)
x=-1⋅-6+ln(5)-ln(3)
Step 8.3.1.2
Rewrite -1⋅-6 as --6.
x=--6+ln(5)-ln(3)
Step 8.3.1.3
Multiply -1 by -6.
x=6+ln(5)-ln(3)
Step 8.3.1.4
Move the negative in front of the fraction.
x=6-ln(5)ln(3)
x=6-ln(5)ln(3)
x=6-ln(5)ln(3)
x=6-ln(5)ln(3)
Step 9
The result can be shown in multiple forms.
Exact Form:
x=6-ln(5)ln(3)
Decimal Form:
x=4.53502647…