Enter a problem...
Precalculus Examples
x+yxy+xyx+yxy+xy
Step 1
Step 1.1
Multiply x+yxy+xyx+yxy+xy by xyxyxyxy.
xyxy⋅x+yxy+xyxyxy⋅x+yxy+xy
Step 1.2
Combine.
xy(x+yx)xy(y+xy)xy(x+yx)xy(y+xy)
xy(x+yx)xy(y+xy)xy(x+yx)xy(y+xy)
Step 2
Apply the distributive property.
xyx+xyyxxy⋅y+xyxyxyx+xyyxxy⋅y+xyxy
Step 3
Step 3.1
Cancel the common factor of xx.
Step 3.1.1
Factor xx out of xyxy.
xyx+x(y)yxxy⋅y+xyxyxyx+x(y)yxxy⋅y+xyxy
Step 3.1.2
Cancel the common factor.
xyx+xyyxxy⋅y+xyxy
Step 3.1.3
Rewrite the expression.
xyx+y⋅yxy⋅y+xyxy
xyx+y⋅yxy⋅y+xyxy
Step 3.2
Raise y to the power of 1.
xyx+y1yxy⋅y+xyxy
Step 3.3
Raise y to the power of 1.
xyx+y1y1xy⋅y+xyxy
Step 3.4
Use the power rule aman=am+n to combine exponents.
xyx+y1+1xy⋅y+xyxy
Step 3.5
Add 1 and 1.
xyx+y2xy⋅y+xyxy
Step 3.6
Cancel the common factor of y.
Step 3.6.1
Factor y out of xy.
xyx+y2xy⋅y+yxxy
Step 3.6.2
Cancel the common factor.
xyx+y2xy⋅y+yxxy
Step 3.6.3
Rewrite the expression.
xyx+y2xy⋅y+x⋅x
xyx+y2xy⋅y+x⋅x
Step 3.7
Raise x to the power of 1.
xyx+y2xy⋅y+x1x
Step 3.8
Raise x to the power of 1.
xyx+y2xy⋅y+x1x1
Step 3.9
Use the power rule aman=am+n to combine exponents.
xyx+y2xy⋅y+x1+1
Step 3.10
Add 1 and 1.
xyx+y2xy⋅y+x2
xyx+y2xy⋅y+x2
Step 4
Step 4.1
Factor y out of xyx+y2.
Step 4.1.1
Factor y out of xyx.
y(x⋅x)+y2xy⋅y+x2
Step 4.1.2
Factor y out of y2.
y(x⋅x)+y⋅yxy⋅y+x2
Step 4.1.3
Factor y out of y(x⋅x)+y⋅y.
y(x⋅x+y)xy⋅y+x2
y(x⋅x+y)xy⋅y+x2
Step 4.2
Multiply x by x.
y(x2+y)xy⋅y+x2
y(x2+y)xy⋅y+x2
Step 5
Step 5.1
Factor x out of xy⋅y+x2.
Step 5.1.1
Factor x out of xy⋅y.
y(x2+y)x(y⋅y)+x2
Step 5.1.2
Factor x out of x2.
y(x2+y)x(y⋅y)+x⋅x
Step 5.1.3
Factor x out of x(y⋅y)+x⋅x.
y(x2+y)x(y⋅y+x)
y(x2+y)x(y⋅y+x)
Step 5.2
Multiply y by y.
y(x2+y)x(y2+x)
y(x2+y)x(y2+x)