Precalculus Examples

Simplify (2x+1)/(x+4)+(1-x)/(x-3)
2x+1x+4+1-xx-32x+1x+4+1xx3
Step 1
To write 2x+1x+42x+1x+4 as a fraction with a common denominator, multiply by x-3x-3x3x3.
2x+1x+4x-3x-3+1-xx-32x+1x+4x3x3+1xx3
Step 2
To write 1-xx-31xx3 as a fraction with a common denominator, multiply by x+4x+4x+4x+4.
2x+1x+4x-3x-3+1-xx-3x+4x+42x+1x+4x3x3+1xx3x+4x+4
Step 3
Write each expression with a common denominator of (x+4)(x-3)(x+4)(x3), by multiplying each by an appropriate factor of 11.
Tap for more steps...
Step 3.1
Multiply 2x+1x+42x+1x+4 by x-3x-3x3x3.
(2x+1)(x-3)(x+4)(x-3)+1-xx-3x+4x+4(2x+1)(x3)(x+4)(x3)+1xx3x+4x+4
Step 3.2
Multiply 1-xx-31xx3 by x+4x+4x+4x+4.
(2x+1)(x-3)(x+4)(x-3)+(1-x)(x+4)(x-3)(x+4)(2x+1)(x3)(x+4)(x3)+(1x)(x+4)(x3)(x+4)
Step 3.3
Reorder the factors of (x-3)(x+4)(x3)(x+4).
(2x+1)(x-3)(x+4)(x-3)+(1-x)(x+4)(x+4)(x-3)(2x+1)(x3)(x+4)(x3)+(1x)(x+4)(x+4)(x3)
(2x+1)(x-3)(x+4)(x-3)+(1-x)(x+4)(x+4)(x-3)(2x+1)(x3)(x+4)(x3)+(1x)(x+4)(x+4)(x3)
Step 4
Combine the numerators over the common denominator.
(2x+1)(x-3)+(1-x)(x+4)(x+4)(x-3)(2x+1)(x3)+(1x)(x+4)(x+4)(x3)
Step 5
Simplify the numerator.
Tap for more steps...
Step 5.1
Expand (2x+1)(x-3)(2x+1)(x3) using the FOIL Method.
Tap for more steps...
Step 5.1.1
Apply the distributive property.
2x(x-3)+1(x-3)+(1-x)(x+4)(x+4)(x-3)2x(x3)+1(x3)+(1x)(x+4)(x+4)(x3)
Step 5.1.2
Apply the distributive property.
2xx+2x-3+1(x-3)+(1-x)(x+4)(x+4)(x-3)2xx+2x3+1(x3)+(1x)(x+4)(x+4)(x3)
Step 5.1.3
Apply the distributive property.
2xx+2x-3+1x+1-3+(1-x)(x+4)(x+4)(x-3)2xx+2x3+1x+13+(1x)(x+4)(x+4)(x3)
2xx+2x-3+1x+1-3+(1-x)(x+4)(x+4)(x-3)2xx+2x3+1x+13+(1x)(x+4)(x+4)(x3)
Step 5.2
Simplify and combine like terms.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Multiply xx by xx by adding the exponents.
Tap for more steps...
Step 5.2.1.1.1
Move xx.
2(xx)+2x-3+1x+1-3+(1-x)(x+4)(x+4)(x-3)2(xx)+2x3+1x+13+(1x)(x+4)(x+4)(x3)
Step 5.2.1.1.2
Multiply xx by xx.
2x2+2x-3+1x+1-3+(1-x)(x+4)(x+4)(x-3)2x2+2x3+1x+13+(1x)(x+4)(x+4)(x3)
2x2+2x-3+1x+1-3+(1-x)(x+4)(x+4)(x-3)2x2+2x3+1x+13+(1x)(x+4)(x+4)(x3)
Step 5.2.1.2
Multiply -33 by 22.
2x2-6x+1x+1-3+(1-x)(x+4)(x+4)(x-3)2x26x+1x+13+(1x)(x+4)(x+4)(x3)
Step 5.2.1.3
Multiply xx by 11.
2x2-6x+x+1-3+(1-x)(x+4)(x+4)(x-3)2x26x+x+13+(1x)(x+4)(x+4)(x3)
Step 5.2.1.4
Multiply -33 by 11.
2x2-6x+x-3+(1-x)(x+4)(x+4)(x-3)2x26x+x3+(1x)(x+4)(x+4)(x3)
2x2-6x+x-3+(1-x)(x+4)(x+4)(x-3)
Step 5.2.2
Add -6x and x.
2x2-5x-3+(1-x)(x+4)(x+4)(x-3)
2x2-5x-3+(1-x)(x+4)(x+4)(x-3)
Step 5.3
Expand (1-x)(x+4) using the FOIL Method.
Tap for more steps...
Step 5.3.1
Apply the distributive property.
2x2-5x-3+1(x+4)-x(x+4)(x+4)(x-3)
Step 5.3.2
Apply the distributive property.
2x2-5x-3+1x+14-x(x+4)(x+4)(x-3)
Step 5.3.3
Apply the distributive property.
2x2-5x-3+1x+14-xx-x4(x+4)(x-3)
2x2-5x-3+1x+14-xx-x4(x+4)(x-3)
Step 5.4
Simplify and combine like terms.
Tap for more steps...
Step 5.4.1
Simplify each term.
Tap for more steps...
Step 5.4.1.1
Multiply x by 1.
2x2-5x-3+x+14-xx-x4(x+4)(x-3)
Step 5.4.1.2
Multiply 4 by 1.
2x2-5x-3+x+4-xx-x4(x+4)(x-3)
Step 5.4.1.3
Multiply x by x by adding the exponents.
Tap for more steps...
Step 5.4.1.3.1
Move x.
2x2-5x-3+x+4-(xx)-x4(x+4)(x-3)
Step 5.4.1.3.2
Multiply x by x.
2x2-5x-3+x+4-x2-x4(x+4)(x-3)
2x2-5x-3+x+4-x2-x4(x+4)(x-3)
Step 5.4.1.4
Multiply 4 by -1.
2x2-5x-3+x+4-x2-4x(x+4)(x-3)
2x2-5x-3+x+4-x2-4x(x+4)(x-3)
Step 5.4.2
Subtract 4x from x.
2x2-5x-3-3x+4-x2(x+4)(x-3)
2x2-5x-3-3x+4-x2(x+4)(x-3)
Step 5.5
Subtract x2 from 2x2.
x2-5x-3-3x+4(x+4)(x-3)
Step 5.6
Subtract 3x from -5x.
x2-8x-3+4(x+4)(x-3)
Step 5.7
Add -3 and 4.
x2-8x+1(x+4)(x-3)
x2-8x+1(x+4)(x-3)
 [x2  12  π  xdx ]