Enter a problem...
Precalculus Examples
2x+1x+4+1-xx-32x+1x+4+1−xx−3
Step 1
To write 2x+1x+42x+1x+4 as a fraction with a common denominator, multiply by x-3x-3x−3x−3.
2x+1x+4⋅x-3x-3+1-xx-32x+1x+4⋅x−3x−3+1−xx−3
Step 2
To write 1-xx-31−xx−3 as a fraction with a common denominator, multiply by x+4x+4x+4x+4.
2x+1x+4⋅x-3x-3+1-xx-3⋅x+4x+42x+1x+4⋅x−3x−3+1−xx−3⋅x+4x+4
Step 3
Step 3.1
Multiply 2x+1x+42x+1x+4 by x-3x-3x−3x−3.
(2x+1)(x-3)(x+4)(x-3)+1-xx-3⋅x+4x+4(2x+1)(x−3)(x+4)(x−3)+1−xx−3⋅x+4x+4
Step 3.2
Multiply 1-xx-31−xx−3 by x+4x+4x+4x+4.
(2x+1)(x-3)(x+4)(x-3)+(1-x)(x+4)(x-3)(x+4)(2x+1)(x−3)(x+4)(x−3)+(1−x)(x+4)(x−3)(x+4)
Step 3.3
Reorder the factors of (x-3)(x+4)(x−3)(x+4).
(2x+1)(x-3)(x+4)(x-3)+(1-x)(x+4)(x+4)(x-3)(2x+1)(x−3)(x+4)(x−3)+(1−x)(x+4)(x+4)(x−3)
(2x+1)(x-3)(x+4)(x-3)+(1-x)(x+4)(x+4)(x-3)(2x+1)(x−3)(x+4)(x−3)+(1−x)(x+4)(x+4)(x−3)
Step 4
Combine the numerators over the common denominator.
(2x+1)(x-3)+(1-x)(x+4)(x+4)(x-3)(2x+1)(x−3)+(1−x)(x+4)(x+4)(x−3)
Step 5
Step 5.1
Expand (2x+1)(x-3)(2x+1)(x−3) using the FOIL Method.
Step 5.1.1
Apply the distributive property.
2x(x-3)+1(x-3)+(1-x)(x+4)(x+4)(x-3)2x(x−3)+1(x−3)+(1−x)(x+4)(x+4)(x−3)
Step 5.1.2
Apply the distributive property.
2x⋅x+2x⋅-3+1(x-3)+(1-x)(x+4)(x+4)(x-3)2x⋅x+2x⋅−3+1(x−3)+(1−x)(x+4)(x+4)(x−3)
Step 5.1.3
Apply the distributive property.
2x⋅x+2x⋅-3+1x+1⋅-3+(1-x)(x+4)(x+4)(x-3)2x⋅x+2x⋅−3+1x+1⋅−3+(1−x)(x+4)(x+4)(x−3)
2x⋅x+2x⋅-3+1x+1⋅-3+(1-x)(x+4)(x+4)(x-3)2x⋅x+2x⋅−3+1x+1⋅−3+(1−x)(x+4)(x+4)(x−3)
Step 5.2
Simplify and combine like terms.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Multiply xx by xx by adding the exponents.
Step 5.2.1.1.1
Move xx.
2(x⋅x)+2x⋅-3+1x+1⋅-3+(1-x)(x+4)(x+4)(x-3)2(x⋅x)+2x⋅−3+1x+1⋅−3+(1−x)(x+4)(x+4)(x−3)
Step 5.2.1.1.2
Multiply xx by xx.
2x2+2x⋅-3+1x+1⋅-3+(1-x)(x+4)(x+4)(x-3)2x2+2x⋅−3+1x+1⋅−3+(1−x)(x+4)(x+4)(x−3)
2x2+2x⋅-3+1x+1⋅-3+(1-x)(x+4)(x+4)(x-3)2x2+2x⋅−3+1x+1⋅−3+(1−x)(x+4)(x+4)(x−3)
Step 5.2.1.2
Multiply -3−3 by 22.
2x2-6x+1x+1⋅-3+(1-x)(x+4)(x+4)(x-3)2x2−6x+1x+1⋅−3+(1−x)(x+4)(x+4)(x−3)
Step 5.2.1.3
Multiply xx by 11.
2x2-6x+x+1⋅-3+(1-x)(x+4)(x+4)(x-3)2x2−6x+x+1⋅−3+(1−x)(x+4)(x+4)(x−3)
Step 5.2.1.4
Multiply -3−3 by 11.
2x2-6x+x-3+(1-x)(x+4)(x+4)(x-3)2x2−6x+x−3+(1−x)(x+4)(x+4)(x−3)
2x2-6x+x-3+(1-x)(x+4)(x+4)(x-3)
Step 5.2.2
Add -6x and x.
2x2-5x-3+(1-x)(x+4)(x+4)(x-3)
2x2-5x-3+(1-x)(x+4)(x+4)(x-3)
Step 5.3
Expand (1-x)(x+4) using the FOIL Method.
Step 5.3.1
Apply the distributive property.
2x2-5x-3+1(x+4)-x(x+4)(x+4)(x-3)
Step 5.3.2
Apply the distributive property.
2x2-5x-3+1x+1⋅4-x(x+4)(x+4)(x-3)
Step 5.3.3
Apply the distributive property.
2x2-5x-3+1x+1⋅4-x⋅x-x⋅4(x+4)(x-3)
2x2-5x-3+1x+1⋅4-x⋅x-x⋅4(x+4)(x-3)
Step 5.4
Simplify and combine like terms.
Step 5.4.1
Simplify each term.
Step 5.4.1.1
Multiply x by 1.
2x2-5x-3+x+1⋅4-x⋅x-x⋅4(x+4)(x-3)
Step 5.4.1.2
Multiply 4 by 1.
2x2-5x-3+x+4-x⋅x-x⋅4(x+4)(x-3)
Step 5.4.1.3
Multiply x by x by adding the exponents.
Step 5.4.1.3.1
Move x.
2x2-5x-3+x+4-(x⋅x)-x⋅4(x+4)(x-3)
Step 5.4.1.3.2
Multiply x by x.
2x2-5x-3+x+4-x2-x⋅4(x+4)(x-3)
2x2-5x-3+x+4-x2-x⋅4(x+4)(x-3)
Step 5.4.1.4
Multiply 4 by -1.
2x2-5x-3+x+4-x2-4x(x+4)(x-3)
2x2-5x-3+x+4-x2-4x(x+4)(x-3)
Step 5.4.2
Subtract 4x from x.
2x2-5x-3-3x+4-x2(x+4)(x-3)
2x2-5x-3-3x+4-x2(x+4)(x-3)
Step 5.5
Subtract x2 from 2x2.
x2-5x-3-3x+4(x+4)(x-3)
Step 5.6
Subtract 3x from -5x.
x2-8x-3+4(x+4)(x-3)
Step 5.7
Add -3 and 4.
x2-8x+1(x+4)(x-3)
x2-8x+1(x+4)(x-3)