Precalculus Examples

Graph f(x)=2 log base 3 of x-1-3
f(x)=2log3(x-1)-3
Step 1
Find the asymptotes.
Tap for more steps...
Step 1.1
Find where the expression log3((x-1)2)-3 is undefined.
x=1
Step 1.2
Ignoring the logarithm, consider the rational function R(x)=axnbxm where n is the degree of the numerator and m is the degree of the denominator.
1. If n<m, then the x-axis, y=0, is the horizontal asymptote.
2. If n=m, then the horizontal asymptote is the line y=ab.
3. If n>m, then there is no horizontal asymptote (there is an oblique asymptote).
Step 1.3
There are no horizontal asymptotes because Q(x) is 1.
No Horizontal Asymptotes
Step 1.4
No oblique asymptotes are present for logarithmic and trigonometric functions.
No Oblique Asymptotes
Step 1.5
This is the set of all asymptotes.
Vertical Asymptotes: x=1
No Horizontal Asymptotes
Vertical Asymptotes: x=1
No Horizontal Asymptotes
Step 2
Find the point at x=2.
Tap for more steps...
Step 2.1
Replace the variable x with 2 in the expression.
f(2)=2log3((2)-1)-3
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Subtract 1 from 2.
f(2)=2log3(1)-3
Step 2.2.1.2
Logarithm base 3 of 1 is 0.
f(2)=20-3
Step 2.2.1.3
Multiply 2 by 0.
f(2)=0-3
f(2)=0-3
Step 2.2.2
Subtract 3 from 0.
f(2)=-3
Step 2.2.3
The final answer is -3.
-3
-3
Step 2.3
Convert -3 to decimal.
y=-3
y=-3
Step 3
Find the point at x=4.
Tap for more steps...
Step 3.1
Replace the variable x with 4 in the expression.
f(4)=2log3((4)-1)-3
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Simplify each term.
Tap for more steps...
Step 3.2.1.1
Subtract 1 from 4.
f(4)=2log3(3)-3
Step 3.2.1.2
Logarithm base 3 of 3 is 1.
f(4)=21-3
Step 3.2.1.3
Multiply 2 by 1.
f(4)=2-3
f(4)=2-3
Step 3.2.2
Subtract 3 from 2.
f(4)=-1
Step 3.2.3
The final answer is -1.
-1
-1
Step 3.3
Convert -1 to decimal.
y=-1
y=-1
Step 4
Find the point at x=10.
Tap for more steps...
Step 4.1
Replace the variable x with 10 in the expression.
f(10)=2log3((10)-1)-3
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1
Subtract 1 from 10.
f(10)=2log3(9)-3
Step 4.2.1.2
Logarithm base 3 of 9 is 2.
f(10)=22-3
Step 4.2.1.3
Multiply 2 by 2.
f(10)=4-3
f(10)=4-3
Step 4.2.2
Subtract 3 from 4.
f(10)=1
Step 4.2.3
The final answer is 1.
1
1
Step 4.3
Convert 1 to decimal.
y=1
y=1
Step 5
The log function can be graphed using the vertical asymptote at x=1 and the points (2,-3),(4,-1),(10,1).
Vertical Asymptote: x=1
xy2-34-1101
Step 6
 [x2  12  π  xdx ]