Precalculus Examples

Find the Degree 2x^2(x-1)(x+2)^3(x^2+1)^2
Step 1
Simplify and reorder the polynomial.
Tap for more steps...
Step 1.1
Apply the distributive property.
Step 1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 1.2.1
Move .
Step 1.2.2
Multiply by .
Tap for more steps...
Step 1.2.2.1
Raise to the power of .
Step 1.2.2.2
Use the power rule to combine exponents.
Step 1.2.3
Add and .
Step 1.3
Multiply by .
Step 1.4
Use the Binomial Theorem.
Step 1.5
Simplify each term.
Tap for more steps...
Step 1.5.1
Multiply by .
Step 1.5.2
Raise to the power of .
Step 1.5.3
Multiply by .
Step 1.5.4
Raise to the power of .
Step 1.6
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.7
Simplify terms.
Tap for more steps...
Step 1.7.1
Simplify each term.
Tap for more steps...
Step 1.7.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.7.1.1.1
Move .
Step 1.7.1.1.2
Use the power rule to combine exponents.
Step 1.7.1.1.3
Add and .
Step 1.7.1.2
Rewrite using the commutative property of multiplication.
Step 1.7.1.3
Multiply by by adding the exponents.
Tap for more steps...
Step 1.7.1.3.1
Move .
Step 1.7.1.3.2
Use the power rule to combine exponents.
Step 1.7.1.3.3
Add and .
Step 1.7.1.4
Multiply by .
Step 1.7.1.5
Rewrite using the commutative property of multiplication.
Step 1.7.1.6
Multiply by by adding the exponents.
Tap for more steps...
Step 1.7.1.6.1
Move .
Step 1.7.1.6.2
Multiply by .
Tap for more steps...
Step 1.7.1.6.2.1
Raise to the power of .
Step 1.7.1.6.2.2
Use the power rule to combine exponents.
Step 1.7.1.6.3
Add and .
Step 1.7.1.7
Multiply by .
Step 1.7.1.8
Multiply by .
Step 1.7.1.9
Multiply by by adding the exponents.
Tap for more steps...
Step 1.7.1.9.1
Move .
Step 1.7.1.9.2
Use the power rule to combine exponents.
Step 1.7.1.9.3
Add and .
Step 1.7.1.10
Rewrite using the commutative property of multiplication.
Step 1.7.1.11
Multiply by by adding the exponents.
Tap for more steps...
Step 1.7.1.11.1
Move .
Step 1.7.1.11.2
Use the power rule to combine exponents.
Step 1.7.1.11.3
Add and .
Step 1.7.1.12
Multiply by .
Step 1.7.1.13
Rewrite using the commutative property of multiplication.
Step 1.7.1.14
Multiply by by adding the exponents.
Tap for more steps...
Step 1.7.1.14.1
Move .
Step 1.7.1.14.2
Multiply by .
Tap for more steps...
Step 1.7.1.14.2.1
Raise to the power of .
Step 1.7.1.14.2.2
Use the power rule to combine exponents.
Step 1.7.1.14.3
Add and .
Step 1.7.1.15
Multiply by .
Step 1.7.1.16
Multiply by .
Step 1.7.2
Simplify by adding terms.
Tap for more steps...
Step 1.7.2.1
Subtract from .
Step 1.7.2.2
Subtract from .
Step 1.7.2.3
Subtract from .
Step 1.7.2.4
Rewrite as .
Step 1.8
Expand using the FOIL Method.
Tap for more steps...
Step 1.8.1
Apply the distributive property.
Step 1.8.2
Apply the distributive property.
Step 1.8.3
Apply the distributive property.
Step 1.9
Simplify and combine like terms.
Tap for more steps...
Step 1.9.1
Simplify each term.
Tap for more steps...
Step 1.9.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.9.1.1.1
Use the power rule to combine exponents.
Step 1.9.1.1.2
Add and .
Step 1.9.1.2
Multiply by .
Step 1.9.1.3
Multiply by .
Step 1.9.1.4
Multiply by .
Step 1.9.2
Add and .
Step 1.10
Expand by multiplying each term in the first expression by each term in the second expression.
Step 1.11
Simplify terms.
Tap for more steps...
Step 1.11.1
Simplify each term.
Tap for more steps...
Step 1.11.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.11.1.1.1
Move .
Step 1.11.1.1.2
Use the power rule to combine exponents.
Step 1.11.1.1.3
Add and .
Step 1.11.1.2
Rewrite using the commutative property of multiplication.
Step 1.11.1.3
Multiply by by adding the exponents.
Tap for more steps...
Step 1.11.1.3.1
Move .
Step 1.11.1.3.2
Use the power rule to combine exponents.
Step 1.11.1.3.3
Add and .
Step 1.11.1.4
Multiply by .
Step 1.11.1.5
Multiply by .
Step 1.11.1.6
Multiply by by adding the exponents.
Tap for more steps...
Step 1.11.1.6.1
Move .
Step 1.11.1.6.2
Use the power rule to combine exponents.
Step 1.11.1.6.3
Add and .
Step 1.11.1.7
Rewrite using the commutative property of multiplication.
Step 1.11.1.8
Multiply by by adding the exponents.
Tap for more steps...
Step 1.11.1.8.1
Move .
Step 1.11.1.8.2
Use the power rule to combine exponents.
Step 1.11.1.8.3
Add and .
Step 1.11.1.9
Multiply by .
Step 1.11.1.10
Multiply by .
Step 1.11.1.11
Multiply by by adding the exponents.
Tap for more steps...
Step 1.11.1.11.1
Move .
Step 1.11.1.11.2
Use the power rule to combine exponents.
Step 1.11.1.11.3
Add and .
Step 1.11.1.12
Rewrite using the commutative property of multiplication.
Step 1.11.1.13
Multiply by by adding the exponents.
Tap for more steps...
Step 1.11.1.13.1
Move .
Step 1.11.1.13.2
Use the power rule to combine exponents.
Step 1.11.1.13.3
Add and .
Step 1.11.1.14
Multiply by .
Step 1.11.1.15
Multiply by .
Step 1.11.1.16
Multiply by by adding the exponents.
Tap for more steps...
Step 1.11.1.16.1
Move .
Step 1.11.1.16.2
Use the power rule to combine exponents.
Step 1.11.1.16.3
Add and .
Step 1.11.1.17
Rewrite using the commutative property of multiplication.
Step 1.11.1.18
Multiply by by adding the exponents.
Tap for more steps...
Step 1.11.1.18.1
Move .
Step 1.11.1.18.2
Use the power rule to combine exponents.
Step 1.11.1.18.3
Add and .
Step 1.11.1.19
Multiply by .
Step 1.11.1.20
Multiply by .
Step 1.11.1.21
Multiply by by adding the exponents.
Tap for more steps...
Step 1.11.1.21.1
Move .
Step 1.11.1.21.2
Use the power rule to combine exponents.
Step 1.11.1.21.3
Add and .
Step 1.11.1.22
Rewrite using the commutative property of multiplication.
Step 1.11.1.23
Multiply by by adding the exponents.
Tap for more steps...
Step 1.11.1.23.1
Move .
Step 1.11.1.23.2
Use the power rule to combine exponents.
Step 1.11.1.23.3
Add and .
Step 1.11.1.24
Multiply by .
Step 1.11.1.25
Multiply by .
Step 1.11.2
Simplify by adding terms.
Tap for more steps...
Step 1.11.2.1
Add and .
Step 1.11.2.2
Add and .
Step 1.11.2.3
Subtract from .
Step 1.11.2.4
Subtract from .
Step 1.11.2.5
Subtract from .
Step 1.11.2.6
Subtract from .
Step 2
The largest exponent is the degree of the polynomial.
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information