Precalculus Examples

Graph f(x)=- natural log of x-1+3
f(x)=-ln(x-1)+3f(x)=ln(x1)+3
Step 1
Find the asymptotes.
Tap for more steps...
Step 1.1
Find where the expression -ln(x-1)+3ln(x1)+3 is undefined.
x1x1
Step 1.2
Since -ln(x-1)+3ln(x1)+3 as xx11 from the left and -ln(x-1)+3ln(x1)+3 as xx11 from the right, then x=1x=1 is a vertical asymptote.
x=1x=1
Step 1.3
Ignoring the logarithm, consider the rational function R(x)=axnbxmR(x)=axnbxm where nn is the degree of the numerator and mm is the degree of the denominator.
1. If n<mn<m, then the x-axis, y=0y=0, is the horizontal asymptote.
2. If n=mn=m, then the horizontal asymptote is the line y=aby=ab.
3. If n>mn>m, then there is no horizontal asymptote (there is an oblique asymptote).
Step 1.4
There are no horizontal asymptotes because Q(x)Q(x) is 11.
No Horizontal Asymptotes
Step 1.5
No oblique asymptotes are present for logarithmic and trigonometric functions.
No Oblique Asymptotes
Step 1.6
This is the set of all asymptotes.
Vertical Asymptotes: x=1x=1
No Horizontal Asymptotes
Vertical Asymptotes: x=1x=1
No Horizontal Asymptotes
Step 2
Find the point at x=2x=2.
Tap for more steps...
Step 2.1
Replace the variable xx with 22 in the expression.
f(2)=-ln((2)-1)+3f(2)=ln((2)1)+3
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Subtract 11 from 22.
f(2)=-ln(1)+3f(2)=ln(1)+3
Step 2.2.1.2
The natural logarithm of 11 is 00.
f(2)=-0+3f(2)=0+3
Step 2.2.1.3
Multiply -11 by 00.
f(2)=0+3f(2)=0+3
f(2)=0+3f(2)=0+3
Step 2.2.2
Add 00 and 33.
f(2)=3f(2)=3
Step 2.2.3
The final answer is 33.
33
33
Step 2.3
Convert 33 to decimal.
y=3y=3
y=3y=3
Step 3
Find the point at x=3x=3.
Tap for more steps...
Step 3.1
Replace the variable xx with 33 in the expression.
f(3)=-ln((3)-1)+3f(3)=ln((3)1)+3
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Subtract 11 from 33.
f(3)=-ln(2)+3f(3)=ln(2)+3
Step 3.2.2
The final answer is -ln(2)+3ln(2)+3.
-ln(2)+3ln(2)+3
-ln(2)+3ln(2)+3
Step 3.3
Convert -ln(2)+3ln(2)+3 to decimal.
y=2.30685281y=2.30685281
y=2.30685281y=2.30685281
Step 4
Find the point at x=4x=4.
Tap for more steps...
Step 4.1
Replace the variable xx with 44 in the expression.
f(4)=-ln((4)-1)+3f(4)=ln((4)1)+3
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Subtract 11 from 44.
f(4)=-ln(3)+3f(4)=ln(3)+3
Step 4.2.2
The final answer is -ln(3)+3.
-ln(3)+3
-ln(3)+3
Step 4.3
Convert -ln(3)+3 to decimal.
y=1.90138771
y=1.90138771
Step 5
The log function can be graphed using the vertical asymptote at x=1 and the points (2,3),(3,2.30685281),(4,1.90138771).
Vertical Asymptote: x=1
xy2332.30741.901
Step 6
image of graph
Enter a problem...
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information
 [x2  12  π  xdx ]