Precalculus Examples

Find the Exact Value tan(285)
tan(285)tan(285)
Step 1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the fourth quadrant.
-tan(75)tan(75)
Step 2
Split 7575 into two angles where the values of the six trigonometric functions are known.
-tan(30+45)tan(30+45)
Step 3
Apply the sum of angles identity.
-tan(30)+tan(45)1-tan(30)tan(45)tan(30)+tan(45)1tan(30)tan(45)
Step 4
The exact value of tan(30)tan(30) is 3333.
-33+tan(45)1-tan(30)tan(45)33+tan(45)1tan(30)tan(45)
Step 5
The exact value of tan(45)tan(45) is 11.
-33+11-tan(30)tan(45)33+11tan(30)tan(45)
Step 6
The exact value of tan(30)tan(30) is 3333.
-33+11-33tan(45)33+1133tan(45)
Step 7
The exact value of tan(45)tan(45) is 11.
-33+11-33133+11331
Step 8
Simplify -33+11-33133+11331.
Tap for more steps...
Step 8.1
Multiply the numerator and denominator of the fraction by 33.
Tap for more steps...
Step 8.1.1
Multiply 33+11-33133+11331 by 3333.
-(3333+11-331)3333+11331
Step 8.1.2
Combine.
-3(33+1)3(1-331)3(33+1)3(1331)
-3(33+1)3(1-331)3(33+1)3(1331)
Step 8.2
Apply the distributive property.
-333+3131+3(-331)333+3131+3(331)
Step 8.3
Cancel the common factor of 33.
Tap for more steps...
Step 8.3.1
Cancel the common factor.
-333+3131+3(-331)
Step 8.3.2
Rewrite the expression.
-3+3131+3(-331)
-3+3131+3(-331)
Step 8.4
Multiply 3 by 1.
-3+331+3(-331)
Step 8.5
Simplify the denominator.
Tap for more steps...
Step 8.5.1
Multiply 3 by 1.
-3+33+3(-331)
Step 8.5.2
Multiply -1 by 1.
-3+33+3(-33)
Step 8.5.3
Cancel the common factor of 3.
Tap for more steps...
Step 8.5.3.1
Move the leading negative in -33 into the numerator.
-3+33+3-33
Step 8.5.3.2
Cancel the common factor.
-3+33+3-33
Step 8.5.3.3
Rewrite the expression.
-3+33-3
-3+33-3
-3+33-3
Step 8.6
Multiply 3+33-3 by 3+33+3.
-(3+33-33+33+3)
Step 8.7
Multiply 3+33-3 by 3+33+3.
-(3+3)(3+3)(3-3)(3+3)
Step 8.8
Expand the denominator using the FOIL method.
-(3+3)(3+3)9+33-33-32
Step 8.9
Simplify.
-(3+3)(3+3)6
Step 8.10
Simplify the numerator.
Tap for more steps...
Step 8.10.1
Reorder terms.
-(3+3)(3+3)6
Step 8.10.2
Raise 3+3 to the power of 1.
-(3+3)1(3+3)6
Step 8.10.3
Raise 3+3 to the power of 1.
-(3+3)1(3+3)16
Step 8.10.4
Use the power rule aman=am+n to combine exponents.
-(3+3)1+16
Step 8.10.5
Add 1 and 1.
-(3+3)26
-(3+3)26
Step 8.11
Rewrite (3+3)2 as (3+3)(3+3).
-(3+3)(3+3)6
Step 8.12
Expand (3+3)(3+3) using the FOIL Method.
Tap for more steps...
Step 8.12.1
Apply the distributive property.
-3(3+3)+3(3+3)6
Step 8.12.2
Apply the distributive property.
-33+33+3(3+3)6
Step 8.12.3
Apply the distributive property.
-33+33+33+336
-33+33+33+336
Step 8.13
Simplify and combine like terms.
Tap for more steps...
Step 8.13.1
Simplify each term.
Tap for more steps...
Step 8.13.1.1
Multiply 3 by 3.
-9+33+33+336
Step 8.13.1.2
Move 3 to the left of 3.
-9+33+33+336
Step 8.13.1.3
Combine using the product rule for radicals.
-9+33+33+336
Step 8.13.1.4
Multiply 3 by 3.
-9+33+33+96
Step 8.13.1.5
Rewrite 9 as 32.
-9+33+33+326
Step 8.13.1.6
Pull terms out from under the radical, assuming positive real numbers.
-9+33+33+36
-9+33+33+36
Step 8.13.2
Add 9 and 3.
-12+33+336
Step 8.13.3
Add 33 and 33.
-12+636
-12+636
Step 8.14
Cancel the common factor of 12+63 and 6.
Tap for more steps...
Step 8.14.1
Factor 6 out of 12.
-62+636
Step 8.14.2
Factor 6 out of 63.
-62+6(3)6
Step 8.14.3
Factor 6 out of 6(2)+6(3).
-6(2+3)6
Step 8.14.4
Cancel the common factors.
Tap for more steps...
Step 8.14.4.1
Factor 6 out of 6.
-6(2+3)6(1)
Step 8.14.4.2
Cancel the common factor.
-6(2+3)61
Step 8.14.4.3
Rewrite the expression.
-2+31
Step 8.14.4.4
Divide 2+3 by 1.
-(2+3)
-(2+3)
-(2+3)
Step 8.15
Apply the distributive property.
-12-3
Step 8.16
Multiply -1 by 2.
-2-3
-2-3
Step 9
The result can be shown in multiple forms.
Exact Form:
-2-3
Decimal Form:
-3.73205080
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information
 [x2  12  π  xdx ]