Enter a problem...
Precalculus Examples
tan(285)tan(285)
Step 1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the fourth quadrant.
-tan(75)−tan(75)
Step 2
Split 7575 into two angles where the values of the six trigonometric functions are known.
-tan(30+45)−tan(30+45)
Step 3
Apply the sum of angles identity.
-tan(30)+tan(45)1-tan(30)tan(45)−tan(30)+tan(45)1−tan(30)tan(45)
Step 4
The exact value of tan(30)tan(30) is √33√33.
-√33+tan(45)1-tan(30)tan(45)−√33+tan(45)1−tan(30)tan(45)
Step 5
The exact value of tan(45)tan(45) is 11.
-√33+11-tan(30)tan(45)−√33+11−tan(30)tan(45)
Step 6
The exact value of tan(30)tan(30) is √33√33.
-√33+11-√33tan(45)−√33+11−√33tan(45)
Step 7
The exact value of tan(45)tan(45) is 11.
-√33+11-√33⋅1−√33+11−√33⋅1
Step 8
Step 8.1
Multiply the numerator and denominator of the fraction by 33.
Step 8.1.1
Multiply √33+11-√33⋅1√33+11−√33⋅1 by 3333.
-(33⋅√33+11-√33⋅1)−⎛⎜⎝33⋅√33+11−√33⋅1⎞⎟⎠
Step 8.1.2
Combine.
-3(√33+1)3(1-√33⋅1)−3(√33+1)3(1−√33⋅1)
-3(√33+1)3(1-√33⋅1)−3(√33+1)3(1−√33⋅1)
Step 8.2
Apply the distributive property.
-3√33+3⋅13⋅1+3(-√33⋅1)−3√33+3⋅13⋅1+3(−√33⋅1)
Step 8.3
Cancel the common factor of 33.
Step 8.3.1
Cancel the common factor.
-3√33+3⋅13⋅1+3(-√33⋅1)
Step 8.3.2
Rewrite the expression.
-√3+3⋅13⋅1+3(-√33⋅1)
-√3+3⋅13⋅1+3(-√33⋅1)
Step 8.4
Multiply 3 by 1.
-√3+33⋅1+3(-√33⋅1)
Step 8.5
Simplify the denominator.
Step 8.5.1
Multiply 3 by 1.
-√3+33+3(-√33⋅1)
Step 8.5.2
Multiply -1 by 1.
-√3+33+3(-√33)
Step 8.5.3
Cancel the common factor of 3.
Step 8.5.3.1
Move the leading negative in -√33 into the numerator.
-√3+33+3-√33
Step 8.5.3.2
Cancel the common factor.
-√3+33+3-√33
Step 8.5.3.3
Rewrite the expression.
-√3+33-√3
-√3+33-√3
-√3+33-√3
Step 8.6
Multiply √3+33-√3 by 3+√33+√3.
-(√3+33-√3⋅3+√33+√3)
Step 8.7
Multiply √3+33-√3 by 3+√33+√3.
-(√3+3)(3+√3)(3-√3)(3+√3)
Step 8.8
Expand the denominator using the FOIL method.
-(√3+3)(3+√3)9+3√3-3√3-√32
Step 8.9
Simplify.
-(√3+3)(3+√3)6
Step 8.10
Simplify the numerator.
Step 8.10.1
Reorder terms.
-(3+√3)(3+√3)6
Step 8.10.2
Raise 3+√3 to the power of 1.
-(3+√3)1(3+√3)6
Step 8.10.3
Raise 3+√3 to the power of 1.
-(3+√3)1(3+√3)16
Step 8.10.4
Use the power rule aman=am+n to combine exponents.
-(3+√3)1+16
Step 8.10.5
Add 1 and 1.
-(3+√3)26
-(3+√3)26
Step 8.11
Rewrite (3+√3)2 as (3+√3)(3+√3).
-(3+√3)(3+√3)6
Step 8.12
Expand (3+√3)(3+√3) using the FOIL Method.
Step 8.12.1
Apply the distributive property.
-3(3+√3)+√3(3+√3)6
Step 8.12.2
Apply the distributive property.
-3⋅3+3√3+√3(3+√3)6
Step 8.12.3
Apply the distributive property.
-3⋅3+3√3+√3⋅3+√3√36
-3⋅3+3√3+√3⋅3+√3√36
Step 8.13
Simplify and combine like terms.
Step 8.13.1
Simplify each term.
Step 8.13.1.1
Multiply 3 by 3.
-9+3√3+√3⋅3+√3√36
Step 8.13.1.2
Move 3 to the left of √3.
-9+3√3+3⋅√3+√3√36
Step 8.13.1.3
Combine using the product rule for radicals.
-9+3√3+3√3+√3⋅36
Step 8.13.1.4
Multiply 3 by 3.
-9+3√3+3√3+√96
Step 8.13.1.5
Rewrite 9 as 32.
-9+3√3+3√3+√326
Step 8.13.1.6
Pull terms out from under the radical, assuming positive real numbers.
-9+3√3+3√3+36
-9+3√3+3√3+36
Step 8.13.2
Add 9 and 3.
-12+3√3+3√36
Step 8.13.3
Add 3√3 and 3√3.
-12+6√36
-12+6√36
Step 8.14
Cancel the common factor of 12+6√3 and 6.
Step 8.14.1
Factor 6 out of 12.
-6⋅2+6√36
Step 8.14.2
Factor 6 out of 6√3.
-6⋅2+6(√3)6
Step 8.14.3
Factor 6 out of 6(2)+6(√3).
-6(2+√3)6
Step 8.14.4
Cancel the common factors.
Step 8.14.4.1
Factor 6 out of 6.
-6(2+√3)6(1)
Step 8.14.4.2
Cancel the common factor.
-6(2+√3)6⋅1
Step 8.14.4.3
Rewrite the expression.
-2+√31
Step 8.14.4.4
Divide 2+√3 by 1.
-(2+√3)
-(2+√3)
-(2+√3)
Step 8.15
Apply the distributive property.
-1⋅2-√3
Step 8.16
Multiply -1 by 2.
-2-√3
-2-√3
Step 9
The result can be shown in multiple forms.
Exact Form:
-2-√3
Decimal Form:
-3.73205080…