Enter a problem...
Precalculus Examples
x4-4x3-x2+4x=0x4−4x3−x2+4x=0
Step 1
Step 1.1
Factor xx out of x4-4x3-x2+4xx4−4x3−x2+4x.
Step 1.1.1
Factor xx out of x4x4.
x⋅x3-4x3-x2+4x=0x⋅x3−4x3−x2+4x=0
Step 1.1.2
Factor xx out of -4x3−4x3.
x⋅x3+x(-4x2)-x2+4x=0x⋅x3+x(−4x2)−x2+4x=0
Step 1.1.3
Factor xx out of -x2−x2.
x⋅x3+x(-4x2)+x(-x)+4x=0x⋅x3+x(−4x2)+x(−x)+4x=0
Step 1.1.4
Factor x out of 4x.
x⋅x3+x(-4x2)+x(-x)+x⋅4=0
Step 1.1.5
Factor x out of x⋅x3+x(-4x2).
x(x3-4x2)+x(-x)+x⋅4=0
Step 1.1.6
Factor x out of x(x3-4x2)+x(-x).
x(x3-4x2-x)+x⋅4=0
Step 1.1.7
Factor x out of x(x3-4x2-x)+x⋅4.
x(x3-4x2-x+4)=0
x(x3-4x2-x+4)=0
Step 1.2
Factor out the greatest common factor from each group.
Step 1.2.1
Group the first two terms and the last two terms.
x((x3-4x2)-x+4)=0
Step 1.2.2
Factor out the greatest common factor (GCF) from each group.
x(x2(x-4)-(x-4))=0
x(x2(x-4)-(x-4))=0
Step 1.3
Factor the polynomial by factoring out the greatest common factor, x-4.
x((x-4)(x2-1))=0
Step 1.4
Rewrite 1 as 12.
x((x-4)(x2-12))=0
Step 1.5
Factor.
Step 1.5.1
Factor.
Step 1.5.1.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=x and b=1.
x((x-4)((x+1)(x-1)))=0
Step 1.5.1.2
Remove unnecessary parentheses.
x((x-4)(x+1)(x-1))=0
x((x-4)(x+1)(x-1))=0
Step 1.5.2
Remove unnecessary parentheses.
x(x-4)(x+1)(x-1)=0
x(x-4)(x+1)(x-1)=0
x(x-4)(x+1)(x-1)=0
Step 2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x=0
x-4=0
x+1=0
x-1=0
Step 3
Set x equal to 0.
x=0
Step 4
Step 4.1
Set x-4 equal to 0.
x-4=0
Step 4.2
Add 4 to both sides of the equation.
x=4
x=4
Step 5
Step 5.1
Set x+1 equal to 0.
x+1=0
Step 5.2
Subtract 1 from both sides of the equation.
x=-1
x=-1
Step 6
Step 6.1
Set x-1 equal to 0.
x-1=0
Step 6.2
Add 1 to both sides of the equation.
x=1
x=1
Step 7
The final solution is all the values that make x(x-4)(x+1)(x-1)=0 true.
x=0,4,-1,1