Precalculus Examples

Simplify (1-cos(x))(1+cos(x))
(1-cos(x))(1+cos(x))
Step 1
Expand (1-cos(x))(1+cos(x)) using the FOIL Method.
Tap for more steps...
Step 1.1
Apply the distributive property.
1(1+cos(x))-cos(x)(1+cos(x))
Step 1.2
Apply the distributive property.
11+1cos(x)-cos(x)(1+cos(x))
Step 1.3
Apply the distributive property.
11+1cos(x)-cos(x)1-cos(x)cos(x)
11+1cos(x)-cos(x)1-cos(x)cos(x)
Step 2
Simplify and combine like terms.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Multiply 1 by 1.
1+1cos(x)-cos(x)1-cos(x)cos(x)
Step 2.1.2
Multiply cos(x) by 1.
1+cos(x)-cos(x)1-cos(x)cos(x)
Step 2.1.3
Multiply -1 by 1.
1+cos(x)-cos(x)-cos(x)cos(x)
Step 2.1.4
Multiply -cos(x)cos(x).
Tap for more steps...
Step 2.1.4.1
Raise cos(x) to the power of 1.
1+cos(x)-cos(x)-(cos1(x)cos(x))
Step 2.1.4.2
Raise cos(x) to the power of 1.
1+cos(x)-cos(x)-(cos1(x)cos1(x))
Step 2.1.4.3
Use the power rule aman=am+n to combine exponents.
1+cos(x)-cos(x)-cos(x)1+1
Step 2.1.4.4
Add 1 and 1.
1+cos(x)-cos(x)-cos2(x)
1+cos(x)-cos(x)-cos2(x)
1+cos(x)-cos(x)-cos2(x)
Step 2.2
Subtract cos(x) from cos(x).
1+0-cos2(x)
Step 2.3
Add 1 and 0.
1-cos2(x)
1-cos2(x)
Step 3
Apply pythagorean identity.
sin2(x)
(1-cos(x))(1+cos(x))
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information
 [x2  12  π  xdx ]