Precalculus Examples

Find the Average Rate of Change g(t)=t/( square root of 9+t^2) , [4,9]
,
Step 1
Write as an equation.
Step 2
Substitute using the average rate of change formula.
Tap for more steps...
Step 2.1
The average rate of change of a function can be found by calculating the change in values of the two points divided by the change in values of the two points.
Step 2.2
Substitute the equation for and , replacing in the function with the corresponding value.
Step 3
Simplify the expression.
Tap for more steps...
Step 3.1
Multiply the numerator and denominator of the fraction by .
Tap for more steps...
Step 3.1.1
Multiply by .
Step 3.1.2
Combine.
Step 3.2
Apply the distributive property.
Step 3.3
Simplify by cancelling.
Tap for more steps...
Step 3.3.1
Cancel the common factor of .
Tap for more steps...
Step 3.3.1.1
Factor out of .
Step 3.3.1.2
Cancel the common factor.
Step 3.3.1.3
Rewrite the expression.
Step 3.3.2
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.1
Move the leading negative in into the numerator.
Step 3.3.2.2
Factor out of .
Step 3.3.2.3
Cancel the common factor.
Step 3.3.2.4
Rewrite the expression.
Step 3.4
Simplify the numerator.
Tap for more steps...
Step 3.4.1
Raise to the power of .
Step 3.4.2
Add and .
Step 3.4.3
Rewrite as .
Step 3.4.4
Pull terms out from under the radical, assuming positive real numbers.
Step 3.4.5
Multiply by .
Step 3.4.6
Raise to the power of .
Step 3.4.7
Add and .
Step 3.4.8
Rewrite as .
Tap for more steps...
Step 3.4.8.1
Factor out of .
Step 3.4.8.2
Rewrite as .
Step 3.4.9
Pull terms out from under the radical.
Step 3.4.10
Multiply by .
Step 3.5
Simplify the denominator.
Tap for more steps...
Step 3.5.1
Combine using the product rule for radicals.
Step 3.5.2
Raise to the power of .
Step 3.5.3
Add and .
Step 3.5.4
Raise to the power of .
Step 3.5.5
Add and .
Step 3.5.6
Multiply by .
Step 3.5.7
Rewrite as .
Tap for more steps...
Step 3.5.7.1
Factor out of .
Step 3.5.7.2
Rewrite as .
Step 3.5.8
Pull terms out from under the radical.
Step 3.5.9
Multiply by .
Step 3.5.10
Combine using the product rule for radicals.
Step 3.5.11
Raise to the power of .
Step 3.5.12
Add and .
Step 3.5.13
Raise to the power of .
Step 3.5.14
Add and .
Step 3.5.15
Multiply by .
Step 3.5.16
Rewrite as .
Tap for more steps...
Step 3.5.16.1
Factor out of .
Step 3.5.16.2
Rewrite as .
Step 3.5.17
Pull terms out from under the radical.
Step 3.5.18
Multiply by .
Step 3.5.19
Multiply by .
Step 3.5.20
Subtract from .
Step 3.6
Cancel the common factor of and .
Tap for more steps...
Step 3.6.1
Factor out of .
Step 3.6.2
Factor out of .
Step 3.6.3
Factor out of .
Step 3.6.4
Cancel the common factors.
Tap for more steps...
Step 3.6.4.1
Factor out of .
Step 3.6.4.2
Cancel the common factor.
Step 3.6.4.3
Rewrite the expression.
Step 3.7
Multiply by .
Step 3.8
Combine and simplify the denominator.
Tap for more steps...
Step 3.8.1
Multiply by .
Step 3.8.2
Move .
Step 3.8.3
Raise to the power of .
Step 3.8.4
Raise to the power of .
Step 3.8.5
Use the power rule to combine exponents.
Step 3.8.6
Add and .
Step 3.8.7
Rewrite as .
Tap for more steps...
Step 3.8.7.1
Use to rewrite as .
Step 3.8.7.2
Apply the power rule and multiply exponents, .
Step 3.8.7.3
Combine and .
Step 3.8.7.4
Cancel the common factor of .
Tap for more steps...
Step 3.8.7.4.1
Cancel the common factor.
Step 3.8.7.4.2
Rewrite the expression.
Step 3.8.7.5
Evaluate the exponent.
Step 3.9
Multiply by .
Step 3.10
Apply the distributive property.
Step 3.11
Multiply .
Tap for more steps...
Step 3.11.1
Raise to the power of .
Step 3.11.2
Raise to the power of .
Step 3.11.3
Use the power rule to combine exponents.
Step 3.11.4
Add and .
Step 3.12
Simplify each term.
Tap for more steps...
Step 3.12.1
Rewrite as .
Tap for more steps...
Step 3.12.1.1
Use to rewrite as .
Step 3.12.1.2
Apply the power rule and multiply exponents, .
Step 3.12.1.3
Combine and .
Step 3.12.1.4
Cancel the common factor of .
Tap for more steps...
Step 3.12.1.4.1
Cancel the common factor.
Step 3.12.1.4.2
Rewrite the expression.
Step 3.12.1.5
Evaluate the exponent.
Step 3.12.2
Multiply by .
Step 3.13
Cancel the common factor of and .
Tap for more steps...
Step 3.13.1
Factor out of .
Step 3.13.2
Factor out of .
Step 3.13.3
Factor out of .
Step 3.13.4
Cancel the common factors.
Tap for more steps...
Step 3.13.4.1
Factor out of .
Step 3.13.4.2
Cancel the common factor.
Step 3.13.4.3
Rewrite the expression.
Step 4
The result can be shown in multiple forms.
Exact Form:
Decimal Form: