Enter a problem...
Precalculus Examples
Step 1
Consider the difference quotient formula.
Step 2
Step 2.1
Evaluate the function at .
Step 2.1.1
Replace the variable with in the expression.
Step 2.1.2
Simplify the result.
Step 2.1.2.1
Simplify the denominator.
Step 2.1.2.1.1
Rewrite as .
Step 2.1.2.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.1.2.2
Move the negative in front of the fraction.
Step 2.1.2.3
The final answer is .
Step 2.2
Find the components of the definition.
Step 3
Plug in the components.
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Multiply .
Step 4.1.1.1
Multiply by .
Step 4.1.1.2
Multiply by .
Step 4.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.1.3
To write as a fraction with a common denominator, multiply by .
Step 4.1.4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 4.1.4.1
Multiply by .
Step 4.1.4.2
Multiply by .
Step 4.1.4.3
Reorder the factors of .
Step 4.1.4.4
Reorder the factors of .
Step 4.1.5
Combine the numerators over the common denominator.
Step 4.1.6
Simplify the numerator.
Step 4.1.6.1
Apply the distributive property.
Step 4.1.6.2
Multiply by .
Step 4.1.6.3
Expand using the FOIL Method.
Step 4.1.6.3.1
Apply the distributive property.
Step 4.1.6.3.2
Apply the distributive property.
Step 4.1.6.3.3
Apply the distributive property.
Step 4.1.6.4
Simplify and combine like terms.
Step 4.1.6.4.1
Simplify each term.
Step 4.1.6.4.1.1
Multiply by by adding the exponents.
Step 4.1.6.4.1.1.1
Move .
Step 4.1.6.4.1.1.2
Multiply by .
Step 4.1.6.4.1.2
Multiply by .
Step 4.1.6.4.1.3
Multiply by .
Step 4.1.6.4.2
Subtract from .
Step 4.1.6.4.3
Add and .
Step 4.1.6.5
Expand by multiplying each term in the first expression by each term in the second expression.
Step 4.1.6.6
Combine the opposite terms in .
Step 4.1.6.6.1
Reorder the factors in the terms and .
Step 4.1.6.6.2
Add and .
Step 4.1.6.6.3
Add and .
Step 4.1.6.6.4
Reorder the factors in the terms and .
Step 4.1.6.6.5
Add and .
Step 4.1.6.6.6
Add and .
Step 4.1.6.7
Simplify each term.
Step 4.1.6.7.1
Multiply by .
Step 4.1.6.7.2
Multiply by .
Step 4.1.6.7.3
Multiply by .
Step 4.1.6.8
Add and .
Step 4.1.6.8.1
Reorder and .
Step 4.1.6.8.2
Add and .
Step 4.1.6.9
Add and .
Step 4.1.6.10
Add and .
Step 4.1.6.11
Subtract from .
Step 4.1.6.12
Add and .
Step 4.1.6.13
Factor out of .
Step 4.1.6.13.1
Factor out of .
Step 4.1.6.13.2
Factor out of .
Step 4.1.6.13.3
Factor out of .
Step 4.2
Multiply the numerator by the reciprocal of the denominator.
Step 4.3
Cancel the common factor of .
Step 4.3.1
Cancel the common factor.
Step 4.3.2
Rewrite the expression.
Step 5