Enter a problem...
Precalculus Examples
f(x)=18+3e-3x
Step 1
Consider the difference quotient formula.
f(x+h)-f(x)h
Step 2
Step 2.1
Evaluate the function at x=x+h.
Step 2.1.1
Replace the variable x with x+h in the expression.
f(x+h)=18+3e-3(x+h)
Step 2.1.2
Simplify the result.
Step 2.1.2.1
Apply the distributive property.
f(x+h)=18+3e-3x-3h
Step 2.1.2.2
The final answer is 18+3e-3x-3h.
18+3e-3x-3h
18+3e-3x-3h
18+3e-3x-3h
Step 2.2
Find the components of the definition.
f(x+h)=18+3e-3x-3h
f(x)=18+3e-3x
f(x+h)=18+3e-3x-3h
f(x)=18+3e-3x
Step 3
Plug in the components.
f(x+h)-f(x)h=18+3e-3x-3h-(18+3e-3x)h
Step 4
Step 4.1
Apply the distributive property.
18+3e-3x-3h-1⋅18-(3e-3x)h
Step 4.2
Multiply -1 by 18.
18+3e-3x-3h-18-(3e-3x)h
Step 4.3
Multiply 3 by -1.
18+3e-3x-3h-18-3e-3xh
Step 4.4
Subtract 18 from 18.
3e-3x-3h+0-3e-3xh
Step 4.5
Add 3e-3x-3h and 0.
3e-3x-3h-3e-3xh
Step 4.6
Rewrite 3e-3x-3h-3e-3x in a factored form.
Step 4.6.1
Factor 3 out of 3e-3x-3h-3e-3x.
Step 4.6.1.1
Factor 3 out of 3e-3x-3h.
3e-3x-3h-3e-3xh
Step 4.6.1.2
Factor 3 out of -3e-3x.
3e-3x-3h+3(-e-3x)h
Step 4.6.1.3
Factor 3 out of 3e-3x-3h+3(-e-3x).
3(e-3x-3h-e-3x)h
3(e-3x-3h-e-3x)h
Step 4.6.2
Rewrite e-3x-3h as (e-x-h)3.
3((e-x-h)3-e-3x)h
Step 4.6.3
Rewrite e-3x as (e-x)3.
3((e-x-h)3-(e-x)3)h
Step 4.6.4
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2) where a=e-x-h and b=e-x.
3((e-x-h-e-x)((e-x-h)2+e-x-he-x+(e-x)2))h
Step 4.6.5
Simplify.
Step 4.6.5.1
Multiply the exponents in (e-x-h)2.
Step 4.6.5.1.1
Apply the power rule and multiply exponents, (am)n=amn.
3((e-x-h-e-x)(e(-x-h)⋅2+e-x-he-x+(e-x)2))h
Step 4.6.5.1.2
Apply the distributive property.
3((e-x-h-e-x)(e-x⋅2-h⋅2+e-x-he-x+(e-x)2))h
Step 4.6.5.1.3
Multiply 2 by -1.
3((e-x-h-e-x)(e-2x-h⋅2+e-x-he-x+(e-x)2))h
Step 4.6.5.1.4
Multiply 2 by -1.
3((e-x-h-e-x)(e-2x-2h+e-x-he-x+(e-x)2))h
3((e-x-h-e-x)(e-2x-2h+e-x-he-x+(e-x)2))h
Step 4.6.5.2
Multiply e-x-h by e-x by adding the exponents.
Step 4.6.5.2.1
Use the power rule aman=am+n to combine exponents.
3((e-x-h-e-x)(e-2x-2h+e-x-h-x+(e-x)2))h
Step 4.6.5.2.2
Subtract x from -x.
3((e-x-h-e-x)(e-2x-2h+e-2x-h+(e-x)2))h
3((e-x-h-e-x)(e-2x-2h+e-2x-h+(e-x)2))h
Step 4.6.5.3
Multiply the exponents in (e-x)2.
Step 4.6.5.3.1
Apply the power rule and multiply exponents, (am)n=amn.
3((e-x-h-e-x)(e-2x-2h+e-2x-h+e-x⋅2))h
Step 4.6.5.3.2
Multiply 2 by -1.
3((e-x-h-e-x)(e-2x-2h+e-2x-h+e-2x))h
3((e-x-h-e-x)(e-2x-2h+e-2x-h+e-2x))h
3(e-x-h-e-x)(e-2x-2h+e-2x-h+e-2x)h
3(e-x-h-e-x)(e-2x-2h+e-2x-h+e-2x)h
3(e-x-h-e-x)(e-2x-2h+e-2x-h+e-2x)h
Step 5