Precalculus Examples

Find the Average Rate of Change t(x)=x^3(8-x^2)+98.6
Step 1
Consider the difference quotient formula.
Step 2
Find the components of the definition.
Tap for more steps...
Step 2.1
Evaluate the function at .
Tap for more steps...
Step 2.1.1
Replace the variable with in the expression.
Step 2.1.2
Simplify the result.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Use the Binomial Theorem.
Step 2.1.2.1.2
Simplify each term.
Tap for more steps...
Step 2.1.2.1.2.1
Rewrite as .
Step 2.1.2.1.2.2
Expand using the FOIL Method.
Tap for more steps...
Step 2.1.2.1.2.2.1
Apply the distributive property.
Step 2.1.2.1.2.2.2
Apply the distributive property.
Step 2.1.2.1.2.2.3
Apply the distributive property.
Step 2.1.2.1.2.3
Simplify and combine like terms.
Tap for more steps...
Step 2.1.2.1.2.3.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.2.3.1.1
Multiply by .
Step 2.1.2.1.2.3.1.2
Multiply by .
Step 2.1.2.1.2.3.2
Add and .
Tap for more steps...
Step 2.1.2.1.2.3.2.1
Reorder and .
Step 2.1.2.1.2.3.2.2
Add and .
Step 2.1.2.1.2.4
Apply the distributive property.
Step 2.1.2.1.2.5
Multiply by .
Step 2.1.2.1.3
Expand by multiplying each term in the first expression by each term in the second expression.
Step 2.1.2.1.4
Simplify each term.
Tap for more steps...
Step 2.1.2.1.4.1
Move to the left of .
Step 2.1.2.1.4.2
Rewrite using the commutative property of multiplication.
Step 2.1.2.1.4.3
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.2.1.4.3.1
Move .
Step 2.1.2.1.4.3.2
Use the power rule to combine exponents.
Step 2.1.2.1.4.3.3
Add and .
Step 2.1.2.1.4.4
Rewrite using the commutative property of multiplication.
Step 2.1.2.1.4.5
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.2.1.4.5.1
Move .
Step 2.1.2.1.4.5.2
Multiply by .
Tap for more steps...
Step 2.1.2.1.4.5.2.1
Raise to the power of .
Step 2.1.2.1.4.5.2.2
Use the power rule to combine exponents.
Step 2.1.2.1.4.5.3
Add and .
Step 2.1.2.1.4.6
Rewrite using the commutative property of multiplication.
Step 2.1.2.1.4.7
Multiply by .
Step 2.1.2.1.4.8
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.2.1.4.8.1
Move .
Step 2.1.2.1.4.8.2
Use the power rule to combine exponents.
Step 2.1.2.1.4.8.3
Add and .
Step 2.1.2.1.4.9
Multiply by .
Step 2.1.2.1.4.10
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.2.1.4.10.1
Move .
Step 2.1.2.1.4.10.2
Multiply by .
Tap for more steps...
Step 2.1.2.1.4.10.2.1
Raise to the power of .
Step 2.1.2.1.4.10.2.2
Use the power rule to combine exponents.
Step 2.1.2.1.4.10.3
Add and .
Step 2.1.2.1.4.11
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.2.1.4.11.1
Move .
Step 2.1.2.1.4.11.2
Multiply by .
Step 2.1.2.1.4.12
Multiply by .
Step 2.1.2.1.4.13
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.2.1.4.13.1
Move .
Step 2.1.2.1.4.13.2
Multiply by .
Tap for more steps...
Step 2.1.2.1.4.13.2.1
Raise to the power of .
Step 2.1.2.1.4.13.2.2
Use the power rule to combine exponents.
Step 2.1.2.1.4.13.3
Add and .
Step 2.1.2.1.4.14
Multiply by .
Step 2.1.2.1.4.15
Multiply by .
Step 2.1.2.1.4.16
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.2.1.4.16.1
Move .
Step 2.1.2.1.4.16.2
Multiply by .
Tap for more steps...
Step 2.1.2.1.4.16.2.1
Raise to the power of .
Step 2.1.2.1.4.16.2.2
Use the power rule to combine exponents.
Step 2.1.2.1.4.16.3
Add and .
Step 2.1.2.1.4.17
Multiply by .
Step 2.1.2.1.4.18
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.2.1.4.18.1
Move .
Step 2.1.2.1.4.18.2
Multiply by .
Step 2.1.2.1.4.19
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.2.1.4.19.1
Move .
Step 2.1.2.1.4.19.2
Multiply by .
Tap for more steps...
Step 2.1.2.1.4.19.2.1
Raise to the power of .
Step 2.1.2.1.4.19.2.2
Use the power rule to combine exponents.
Step 2.1.2.1.4.19.3
Add and .
Step 2.1.2.1.4.20
Multiply by .
Step 2.1.2.1.4.21
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.2.1.4.21.1
Move .
Step 2.1.2.1.4.21.2
Use the power rule to combine exponents.
Step 2.1.2.1.4.21.3
Add and .
Step 2.1.2.1.4.22
Multiply by .
Step 2.1.2.1.4.23
Move to the left of .
Step 2.1.2.1.4.24
Rewrite using the commutative property of multiplication.
Step 2.1.2.1.4.25
Rewrite using the commutative property of multiplication.
Step 2.1.2.1.4.26
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.2.1.4.26.1
Move .
Step 2.1.2.1.4.26.2
Multiply by .
Tap for more steps...
Step 2.1.2.1.4.26.2.1
Raise to the power of .
Step 2.1.2.1.4.26.2.2
Use the power rule to combine exponents.
Step 2.1.2.1.4.26.3
Add and .
Step 2.1.2.1.4.27
Rewrite using the commutative property of multiplication.
Step 2.1.2.1.4.28
Multiply by by adding the exponents.
Tap for more steps...
Step 2.1.2.1.4.28.1
Move .
Step 2.1.2.1.4.28.2
Use the power rule to combine exponents.
Step 2.1.2.1.4.28.3
Add and .
Step 2.1.2.1.5
Subtract from .
Step 2.1.2.1.6
Subtract from .
Step 2.1.2.1.7
Subtract from .
Step 2.1.2.1.8
Subtract from .
Step 2.1.2.1.9
Subtract from .
Tap for more steps...
Step 2.1.2.1.9.1
Move .
Step 2.1.2.1.9.2
Subtract from .
Step 2.1.2.1.10
Subtract from .
Tap for more steps...
Step 2.1.2.1.10.1
Move .
Step 2.1.2.1.10.2
Subtract from .
Step 2.1.2.2
The final answer is .
Step 2.2
Reorder.
Tap for more steps...
Step 2.2.1
Move .
Step 2.2.2
Move .
Step 2.2.3
Move .
Step 2.2.4
Move .
Step 2.2.5
Move .
Step 2.2.6
Move .
Step 2.2.7
Move .
Step 2.2.8
Move .
Step 2.2.9
Move .
Step 2.2.10
Move .
Step 2.2.11
Move .
Step 2.2.12
Move .
Step 2.2.13
Reorder and .
Step 2.3
Find the components of the definition.
Step 3
Plug in the components.
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Apply the distributive property.
Step 4.1.2
Simplify.
Tap for more steps...
Step 4.1.2.1
Multiply by .
Step 4.1.2.2
Multiply .
Tap for more steps...
Step 4.1.2.2.1
Multiply by .
Step 4.1.2.2.2
Multiply by .
Step 4.1.2.3
Multiply by .
Step 4.1.3
Add and .
Step 4.1.4
Add and .
Step 4.1.5
Subtract from .
Step 4.1.6
Add and .
Step 4.1.7
Subtract from .
Step 4.1.8
Add and .
Step 4.1.9
Factor out of .
Tap for more steps...
Step 4.1.9.1
Factor out of .
Step 4.1.9.2
Factor out of .
Step 4.1.9.3
Factor out of .
Step 4.1.9.4
Factor out of .
Step 4.1.9.5
Factor out of .
Step 4.1.9.6
Factor out of .
Step 4.1.9.7
Factor out of .
Step 4.1.9.8
Factor out of .
Step 4.1.9.9
Factor out of .
Step 4.1.9.10
Factor out of .
Step 4.1.9.11
Factor out of .
Step 4.1.9.12
Factor out of .
Step 4.1.9.13
Factor out of .
Step 4.1.9.14
Factor out of .
Step 4.1.9.15
Factor out of .
Step 4.2
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 4.2.1
Cancel the common factor of .
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
Step 4.2.1.2
Divide by .
Step 4.2.2
Simplify the expression.
Tap for more steps...
Step 4.2.2.1
Move .
Step 4.2.2.2
Move .
Step 4.2.2.3
Move .
Step 4.2.2.4
Move .
Step 4.2.2.5
Move .
Step 4.2.2.6
Move .
Step 4.2.2.7
Move .
Step 4.2.2.8
Move .
Step 4.2.2.9
Move .
Step 4.2.2.10
Reorder and .
Step 5