Enter a problem...
Precalculus Examples
Step 1
Consider the difference quotient formula.
Step 2
Step 2.1
Evaluate the function at .
Step 2.1.1
Replace the variable with in the expression.
Step 2.1.2
Simplify the result.
Step 2.1.2.1
Simplify each term.
Step 2.1.2.1.1
Use the Binomial Theorem.
Step 2.1.2.1.2
Apply the distributive property.
Step 2.1.2.1.3
Simplify.
Step 2.1.2.1.3.1
Combine and .
Step 2.1.2.1.3.2
Multiply .
Step 2.1.2.1.3.2.1
Combine and .
Step 2.1.2.1.3.2.2
Combine and .
Step 2.1.2.1.3.2.3
Combine and .
Step 2.1.2.1.3.3
Multiply .
Step 2.1.2.1.3.3.1
Combine and .
Step 2.1.2.1.3.3.2
Combine and .
Step 2.1.2.1.3.3.3
Combine and .
Step 2.1.2.1.3.4
Combine and .
Step 2.1.2.1.4
Simplify each term.
Step 2.1.2.1.4.1
Move to the left of .
Step 2.1.2.1.4.2
Move to the left of .
Step 2.1.2.1.5
Rewrite as .
Step 2.1.2.1.6
Expand using the FOIL Method.
Step 2.1.2.1.6.1
Apply the distributive property.
Step 2.1.2.1.6.2
Apply the distributive property.
Step 2.1.2.1.6.3
Apply the distributive property.
Step 2.1.2.1.7
Simplify and combine like terms.
Step 2.1.2.1.7.1
Simplify each term.
Step 2.1.2.1.7.1.1
Multiply by .
Step 2.1.2.1.7.1.2
Multiply by .
Step 2.1.2.1.7.2
Add and .
Step 2.1.2.1.7.2.1
Reorder and .
Step 2.1.2.1.7.2.2
Add and .
Step 2.1.2.1.8
Apply the distributive property.
Step 2.1.2.1.9
Multiply by .
Step 2.1.2.2
The final answer is .
Step 2.2
Reorder.
Step 2.2.1
Move .
Step 2.2.2
Move .
Step 2.2.3
Move .
Step 2.2.4
Move .
Step 2.2.5
Move .
Step 2.2.6
Move .
Step 2.2.7
Reorder and .
Step 2.3
Find the components of the definition.
Step 3
Plug in the components.
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Apply the distributive property.
Step 4.1.2
Multiply .
Step 4.1.2.1
Multiply by .
Step 4.1.2.2
Multiply by .
Step 4.1.3
Subtract from .
Step 4.1.4
Add and .
Step 4.1.5
Add and .
Step 4.1.6
Add and .
Step 4.1.7
Combine the numerators over the common denominator.
Step 4.1.8
Factor out of .
Step 4.1.8.1
Factor out of .
Step 4.1.8.2
Factor out of .
Step 4.1.8.3
Factor out of .
Step 4.1.9
Combine the numerators over the common denominator.
Step 4.1.10
Simplify the numerator.
Step 4.1.10.1
Factor out of .
Step 4.1.10.1.1
Factor out of .
Step 4.1.10.1.2
Factor out of .
Step 4.1.10.1.3
Factor out of .
Step 4.1.10.2
Apply the distributive property.
Step 4.1.10.3
Multiply by .
Step 4.1.10.4
Rewrite using the commutative property of multiplication.
Step 4.1.11
To write as a fraction with a common denominator, multiply by .
Step 4.1.12
Combine and .
Step 4.1.13
Combine the numerators over the common denominator.
Step 4.1.14
Simplify the numerator.
Step 4.1.14.1
Factor out of .
Step 4.1.14.1.1
Factor out of .
Step 4.1.14.1.2
Factor out of .
Step 4.1.14.2
Multiply by .
Step 4.1.15
To write as a fraction with a common denominator, multiply by .
Step 4.1.16
Combine and .
Step 4.1.17
Combine the numerators over the common denominator.
Step 4.1.18
Simplify the numerator.
Step 4.1.18.1
Factor out of .
Step 4.1.18.1.1
Factor out of .
Step 4.1.18.1.2
Factor out of .
Step 4.1.18.2
Multiply by .
Step 4.2
Multiply the numerator by the reciprocal of the denominator.
Step 4.3
Combine.
Step 4.4
Cancel the common factor of .
Step 4.4.1
Cancel the common factor.
Step 4.4.2
Rewrite the expression.
Step 4.5
Multiply by .
Step 5