Enter a problem...
Precalculus Examples
Step 1
Consider the difference quotient formula.
Step 2
Step 2.1
Evaluate the function at .
Step 2.1.1
Replace the variable with in the expression.
Step 2.1.2
Simplify the result.
Step 2.1.2.1
Simplify the denominator.
Step 2.1.2.1.1
Rewrite as .
Step 2.1.2.1.2
Expand using the FOIL Method.
Step 2.1.2.1.2.1
Apply the distributive property.
Step 2.1.2.1.2.2
Apply the distributive property.
Step 2.1.2.1.2.3
Apply the distributive property.
Step 2.1.2.1.3
Simplify and combine like terms.
Step 2.1.2.1.3.1
Simplify each term.
Step 2.1.2.1.3.1.1
Multiply by .
Step 2.1.2.1.3.1.2
Multiply by .
Step 2.1.2.1.3.2
Add and .
Step 2.1.2.1.3.2.1
Reorder and .
Step 2.1.2.1.3.2.2
Add and .
Step 2.1.2.1.4
Apply the distributive property.
Step 2.1.2.1.5
Multiply by .
Step 2.1.2.2
The final answer is .
Step 2.2
Find the components of the definition.
Step 3
Plug in the components.
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
To write as a fraction with a common denominator, multiply by .
Step 4.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 4.1.3.1
Multiply by .
Step 4.1.3.2
Multiply by .
Step 4.1.3.3
Reorder the factors of .
Step 4.1.4
Combine the numerators over the common denominator.
Step 4.1.5
Rewrite in a factored form.
Step 4.1.5.1
Factor out of .
Step 4.1.5.1.1
Factor out of .
Step 4.1.5.1.2
Factor out of .
Step 4.1.5.1.3
Factor out of .
Step 4.1.5.2
Expand using the FOIL Method.
Step 4.1.5.2.1
Apply the distributive property.
Step 4.1.5.2.2
Apply the distributive property.
Step 4.1.5.2.3
Apply the distributive property.
Step 4.1.5.3
Simplify each term.
Step 4.1.5.3.1
Rewrite using the commutative property of multiplication.
Step 4.1.5.3.2
Multiply by by adding the exponents.
Step 4.1.5.3.2.1
Move .
Step 4.1.5.3.2.2
Multiply by .
Step 4.1.5.3.2.2.1
Raise to the power of .
Step 4.1.5.3.2.2.2
Use the power rule to combine exponents.
Step 4.1.5.3.2.3
Add and .
Step 4.1.5.3.3
Move to the left of .
Step 4.1.5.3.4
Rewrite using the commutative property of multiplication.
Step 4.1.5.3.5
Move to the left of .
Step 4.1.5.4
Apply the distributive property.
Step 4.1.5.5
Simplify.
Step 4.1.5.5.1
Rewrite using the commutative property of multiplication.
Step 4.1.5.5.2
Multiply by by adding the exponents.
Step 4.1.5.5.2.1
Move .
Step 4.1.5.5.2.2
Multiply by .
Step 4.1.5.5.3
Rewrite using the commutative property of multiplication.
Step 4.1.5.5.4
Multiply by .
Step 4.1.5.6
Simplify each term.
Step 4.1.5.6.1
Multiply by by adding the exponents.
Step 4.1.5.6.1.1
Move .
Step 4.1.5.6.1.2
Multiply by .
Step 4.1.5.6.1.2.1
Raise to the power of .
Step 4.1.5.6.1.2.2
Use the power rule to combine exponents.
Step 4.1.5.6.1.3
Add and .
Step 4.1.5.6.2
Multiply by .
Step 4.1.5.6.3
Rewrite using the commutative property of multiplication.
Step 4.1.5.6.4
Multiply by .
Step 4.1.5.6.5
Multiply by .
Step 4.1.5.7
Subtract from .
Step 4.1.5.8
Add and .
Step 4.1.5.9
Subtract from .
Step 4.1.5.10
Add and .
Step 4.1.5.11
Subtract from .
Step 4.1.5.11.1
Move .
Step 4.1.5.11.2
Subtract from .
Step 4.1.5.12
Factor out of .
Step 4.1.5.12.1
Factor out of .
Step 4.1.5.12.2
Factor out of .
Step 4.1.5.12.3
Factor out of .
Step 4.1.5.12.4
Factor out of .
Step 4.1.5.12.5
Factor out of .
Step 4.2
Multiply the numerator by the reciprocal of the denominator.
Step 4.3
Combine.
Step 4.4
Cancel the common factor of .
Step 4.4.1
Cancel the common factor.
Step 4.4.2
Rewrite the expression.
Step 4.5
Multiply by .
Step 4.6
Factor out of .
Step 4.7
Rewrite as .
Step 4.8
Factor out of .
Step 4.9
Factor out of .
Step 4.10
Factor out of .
Step 4.11
Simplify the expression.
Step 4.11.1
Rewrite as .
Step 4.11.2
Move the negative in front of the fraction.
Step 5