Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Isolate to the left side of the equation.
Step 1.1.1
Subtract from both sides of the equation.
Step 1.1.2
Divide each term in by and simplify.
Step 1.1.2.1
Divide each term in by .
Step 1.1.2.2
Simplify the left side.
Step 1.1.2.2.1
Dividing two negative values results in a positive value.
Step 1.1.2.2.2
Divide by .
Step 1.1.2.3
Simplify the right side.
Step 1.1.2.3.1
Simplify each term.
Step 1.1.2.3.1.1
Move the negative one from the denominator of .
Step 1.1.2.3.1.2
Rewrite as .
Step 1.1.2.3.1.3
Multiply by .
Step 1.1.2.3.1.4
Divide by .
Step 1.1.2.3.1.5
Dividing two negative values results in a positive value.
Step 1.1.2.3.1.6
Divide by .
Step 1.2
Complete the square for .
Step 1.2.1
Simplify the expression.
Step 1.2.1.1
Move .
Step 1.2.1.2
Reorder and .
Step 1.2.2
Use the form , to find the values of , , and .
Step 1.2.3
Consider the vertex form of a parabola.
Step 1.2.4
Find the value of using the formula .
Step 1.2.4.1
Substitute the values of and into the formula .
Step 1.2.4.2
Cancel the common factor of and .
Step 1.2.4.2.1
Factor out of .
Step 1.2.4.2.2
Cancel the common factors.
Step 1.2.4.2.2.1
Factor out of .
Step 1.2.4.2.2.2
Cancel the common factor.
Step 1.2.4.2.2.3
Rewrite the expression.
Step 1.2.4.2.2.4
Divide by .
Step 1.2.5
Find the value of using the formula .
Step 1.2.5.1
Substitute the values of , and into the formula .
Step 1.2.5.2
Simplify the right side.
Step 1.2.5.2.1
Simplify each term.
Step 1.2.5.2.1.1
Raise to the power of .
Step 1.2.5.2.1.2
Multiply by .
Step 1.2.5.2.1.3
Cancel the common factor of .
Step 1.2.5.2.1.3.1
Cancel the common factor.
Step 1.2.5.2.1.3.2
Rewrite the expression.
Step 1.2.5.2.1.4
Multiply by .
Step 1.2.5.2.2
Subtract from .
Step 1.2.6
Substitute the values of , , and into the vertex form .
Step 1.3
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Find the vertex .
Step 4