Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Isolate to the left side of the equation.
Step 1.1.1
Add to both sides of the equation.
Step 1.1.2
Divide each term in by and simplify.
Step 1.1.2.1
Divide each term in by .
Step 1.1.2.2
Simplify the left side.
Step 1.1.2.2.1
Cancel the common factor of .
Step 1.1.2.2.1.1
Cancel the common factor.
Step 1.1.2.2.1.2
Divide by .
Step 1.1.2.3
Simplify the right side.
Step 1.1.2.3.1
Simplify each term.
Step 1.1.2.3.1.1
Cancel the common factor of and .
Step 1.1.2.3.1.1.1
Factor out of .
Step 1.1.2.3.1.1.2
Cancel the common factors.
Step 1.1.2.3.1.1.2.1
Factor out of .
Step 1.1.2.3.1.1.2.2
Cancel the common factor.
Step 1.1.2.3.1.1.2.3
Rewrite the expression.
Step 1.1.2.3.1.1.2.4
Divide by .
Step 1.1.2.3.1.2
Divide by .
Step 1.2
Complete the square for .
Step 1.2.1
Simplify the expression.
Step 1.2.1.1
Move .
Step 1.2.1.2
Reorder and .
Step 1.2.2
Use the form , to find the values of , , and .
Step 1.2.3
Consider the vertex form of a parabola.
Step 1.2.4
Find the value of using the formula .
Step 1.2.4.1
Substitute the values of and into the formula .
Step 1.2.4.2
Simplify the right side.
Step 1.2.4.2.1
Cancel the common factor of .
Step 1.2.4.2.1.1
Cancel the common factor.
Step 1.2.4.2.1.2
Rewrite the expression.
Step 1.2.4.2.2
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.4.2.3
Multiply by .
Step 1.2.5
Find the value of using the formula .
Step 1.2.5.1
Substitute the values of , and into the formula .
Step 1.2.5.2
Simplify the right side.
Step 1.2.5.2.1
Simplify each term.
Step 1.2.5.2.1.1
Raise to the power of .
Step 1.2.5.2.1.2
Combine and .
Step 1.2.5.2.1.3
Divide by .
Step 1.2.5.2.1.4
Divide by .
Step 1.2.5.2.1.5
Multiply by .
Step 1.2.5.2.2
Subtract from .
Step 1.2.6
Substitute the values of , , and into the vertex form .
Step 1.3
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Find the vertex .
Step 4