Precalculus Examples

Find the Vertex y=-1/3(x+1)(x-5)
Step 1
Rewrite the equation in vertex form.
Tap for more steps...
Step 1.1
Isolate to the left side of the equation.
Tap for more steps...
Step 1.1.1
Remove parentheses.
Step 1.1.2
Remove parentheses.
Step 1.1.3
Simplify .
Tap for more steps...
Step 1.1.3.1
Expand using the FOIL Method.
Tap for more steps...
Step 1.1.3.1.1
Apply the distributive property.
Step 1.1.3.1.2
Apply the distributive property.
Step 1.1.3.1.3
Apply the distributive property.
Step 1.1.3.2
Simplify and combine like terms.
Tap for more steps...
Step 1.1.3.2.1
Simplify each term.
Tap for more steps...
Step 1.1.3.2.1.1
Multiply by .
Step 1.1.3.2.1.2
Move to the left of .
Step 1.1.3.2.1.3
Multiply by .
Step 1.1.3.2.1.4
Multiply by .
Step 1.1.3.2.2
Add and .
Step 1.1.3.3
Apply the distributive property.
Step 1.1.3.4
Simplify.
Tap for more steps...
Step 1.1.3.4.1
Combine and .
Step 1.1.3.4.2
Multiply .
Tap for more steps...
Step 1.1.3.4.2.1
Multiply by .
Step 1.1.3.4.2.2
Combine and .
Step 1.1.3.4.2.3
Combine and .
Step 1.1.3.4.3
Multiply .
Tap for more steps...
Step 1.1.3.4.3.1
Multiply by .
Step 1.1.3.4.3.2
Combine and .
Step 1.2
Complete the square for .
Tap for more steps...
Step 1.2.1
Use the form , to find the values of , , and .
Step 1.2.2
Consider the vertex form of a parabola.
Step 1.2.3
Find the value of using the formula .
Tap for more steps...
Step 1.2.3.1
Substitute the values of and into the formula .
Step 1.2.3.2
Simplify the right side.
Tap for more steps...
Step 1.2.3.2.1
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.3.2.2
Cancel the common factor of .
Tap for more steps...
Step 1.2.3.2.2.1
Factor out of .
Step 1.2.3.2.2.2
Cancel the common factor.
Step 1.2.3.2.2.3
Rewrite the expression.
Step 1.2.3.2.3
Multiply by .
Step 1.2.3.2.4
Multiply by .
Step 1.2.3.2.5
Combine and .
Step 1.2.3.2.6
Cancel the common factor of and .
Tap for more steps...
Step 1.2.3.2.6.1
Factor out of .
Step 1.2.3.2.6.2
Cancel the common factors.
Tap for more steps...
Step 1.2.3.2.6.2.1
Factor out of .
Step 1.2.3.2.6.2.2
Cancel the common factor.
Step 1.2.3.2.6.2.3
Rewrite the expression.
Step 1.2.3.2.6.2.4
Divide by .
Step 1.2.3.2.7
Move the negative one from the denominator of .
Step 1.2.3.2.8
Multiply by .
Step 1.2.4
Find the value of using the formula .
Tap for more steps...
Step 1.2.4.1
Substitute the values of , and into the formula .
Step 1.2.4.2
Simplify the right side.
Tap for more steps...
Step 1.2.4.2.1
Simplify each term.
Tap for more steps...
Step 1.2.4.2.1.1
Simplify the numerator.
Tap for more steps...
Step 1.2.4.2.1.1.1
Apply the product rule to .
Step 1.2.4.2.1.1.2
Raise to the power of .
Step 1.2.4.2.1.1.3
Raise to the power of .
Step 1.2.4.2.1.2
Simplify the denominator.
Tap for more steps...
Step 1.2.4.2.1.2.1
Multiply by .
Step 1.2.4.2.1.2.2
Combine and .
Step 1.2.4.2.1.3
Move the negative in front of the fraction.
Step 1.2.4.2.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 1.2.4.2.1.5
Cancel the common factor of .
Tap for more steps...
Step 1.2.4.2.1.5.1
Move the leading negative in into the numerator.
Step 1.2.4.2.1.5.2
Factor out of .
Step 1.2.4.2.1.5.3
Cancel the common factor.
Step 1.2.4.2.1.5.4
Rewrite the expression.
Step 1.2.4.2.1.6
Cancel the common factor of .
Tap for more steps...
Step 1.2.4.2.1.6.1
Factor out of .
Step 1.2.4.2.1.6.2
Factor out of .
Step 1.2.4.2.1.6.3
Cancel the common factor.
Step 1.2.4.2.1.6.4
Rewrite the expression.
Step 1.2.4.2.1.7
Combine and .
Step 1.2.4.2.1.8
Multiply by .
Step 1.2.4.2.1.9
Move the negative in front of the fraction.
Step 1.2.4.2.1.10
Multiply .
Tap for more steps...
Step 1.2.4.2.1.10.1
Multiply by .
Step 1.2.4.2.1.10.2
Multiply by .
Step 1.2.4.2.2
Combine the numerators over the common denominator.
Step 1.2.4.2.3
Add and .
Step 1.2.4.2.4
Divide by .
Step 1.2.5
Substitute the values of , , and into the vertex form .
Step 1.3
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Find the vertex .
Step 4