Enter a problem...
Precalculus Examples
-12-4-43-…-4243−12−4−43−…−4243
Step 1
This is a geometric sequence since there is a common ratio between each term. In this case, multiplying the previous term in the sequence by 13 gives the next term. In other words, an=a1rn-1.
Geometric Sequence: r=13
Step 2
Step 2.1
Substitute the values of the first term, last term, and ratio between terms into the formula.
4243=12(13)n-1
Step 2.2
Solve for n.
Step 2.2.1
Rewrite the equation as 12(13)n-1=4243.
12(13)n-1=4243
Step 2.2.2
Divide each term in 12(13)n-1=4243 by 12 and simplify.
Step 2.2.2.1
Divide each term in 12(13)n-1=4243 by 12.
12(13)n-112=424312
Step 2.2.2.2
Simplify the left side.
Step 2.2.2.2.1
Cancel the common factor of 12.
Step 2.2.2.2.1.1
Cancel the common factor.
12(13)n-112=424312
Step 2.2.2.2.1.2
Divide (13)n-1 by 1.
(13)n-1=424312
(13)n-1=424312
Step 2.2.2.2.2
Simplify the expression.
Step 2.2.2.2.2.1
Apply the product rule to 13.
1n-13n-1=424312
Step 2.2.2.2.2.2
One to any power is one.
13n-1=424312
13n-1=424312
13n-1=424312
Step 2.2.2.3
Simplify the right side.
Step 2.2.2.3.1
Multiply the numerator by the reciprocal of the denominator.
13n-1=4243⋅112
Step 2.2.2.3.2
Cancel the common factor of 4.
Step 2.2.2.3.2.1
Factor 4 out of 12.
13n-1=4243⋅14(3)
Step 2.2.2.3.2.2
Cancel the common factor.
13n-1=4243⋅14⋅3
Step 2.2.2.3.2.3
Rewrite the expression.
13n-1=1243⋅13
13n-1=1243⋅13
Step 2.2.2.3.3
Multiply 1243 by 13.
13n-1=1243⋅3
Step 2.2.2.3.4
Multiply 243 by 3.
13n-1=1729
13n-1=1729
13n-1=1729
Step 2.2.3
Multiply both sides by 3n-1.
13n-1⋅3n-1=1729⋅3n-1
Step 2.2.4
Simplify.
Step 2.2.4.1
Simplify the left side.
Step 2.2.4.1.1
Cancel the common factor of 3n-1.
Step 2.2.4.1.1.1
Cancel the common factor.
13n-1⋅3n-1=1729⋅3n-1
Step 2.2.4.1.1.2
Rewrite the expression.
1=1729⋅3n-1
1=1729⋅3n-1
1=1729⋅3n-1
Step 2.2.4.2
Simplify the right side.
Step 2.2.4.2.1
Combine 1729 and 3n-1.
1=3n-1729
1=3n-1729
1=3n-1729
Step 2.2.5
Solve for n.
Step 2.2.5.1
Rewrite the equation as 3n-1729=1.
3n-1729=1
Step 2.2.5.2
Multiply both sides of the equation by 729.
7293n-1729=729⋅1
Step 2.2.5.3
Simplify both sides of the equation.
Step 2.2.5.3.1
Simplify the left side.
Step 2.2.5.3.1.1
Cancel the common factor of 729.
Step 2.2.5.3.1.1.1
Cancel the common factor.
7293n-1729=729⋅1
Step 2.2.5.3.1.1.2
Rewrite the expression.
3n-1=729⋅1
3n-1=729⋅1
3n-1=729⋅1
Step 2.2.5.3.2
Simplify the right side.
Step 2.2.5.3.2.1
Multiply 729 by 1.
3n-1=729
3n-1=729
3n-1=729
Step 2.2.5.4
Create equivalent expressions in the equation that all have equal bases.
3n-1=36
Step 2.2.5.5
Since the bases are the same, then two expressions are only equal if the exponents are also equal.
n-1=6
Step 2.2.5.6
Move all terms not containing n to the right side of the equation.
Step 2.2.5.6.1
Add 1 to both sides of the equation.
n=6+1
Step 2.2.5.6.2
Add 6 and 1.
n=7
n=7
n=7
n=7
n=7
Step 3
Step 3.1
Substitute the values of the first term, ratio, and the number of terms into the sum formula.
Sn=-12((13)7-1)13-1
Step 3.2
Simplify.
Step 3.2.1
Simplify the numerator.
Step 3.2.1.1
Apply the product rule to 13.
Sn=-12(1737-1)13-1
Step 3.2.1.2
One to any power is one.
Sn=-12(137-1)13-1
Step 3.2.1.3
Raise 3 to the power of 7.
Sn=-12(12187-1)13-1
Step 3.2.1.4
To write -1 as a fraction with a common denominator, multiply by 21872187.
Sn=-12(12187-1⋅21872187)13-1
Step 3.2.1.5
Combine -1 and 21872187.
Sn=-12(12187+-1⋅21872187)13-1
Step 3.2.1.6
Combine the numerators over the common denominator.
Sn=-121-1⋅2187218713-1
Step 3.2.1.7
Simplify the numerator.
Step 3.2.1.7.1
Multiply -1 by 2187.
Sn=-121-2187218713-1
Step 3.2.1.7.2
Subtract 2187 from 1.
Sn=-12(-21862187)13-1
Sn=-12(-21862187)13-1
Step 3.2.1.8
Move the negative in front of the fraction.
Sn=-12⋅-12186218713-1
Step 3.2.1.9
Combine exponents.
Step 3.2.1.9.1
Factor out negative.
Sn=-(-12(21862187))13-1
Step 3.2.1.9.2
Combine -12 and 21862187.
Sn=--12⋅2186218713-1
Step 3.2.1.9.3
Multiply -12 by 2186.
Sn=--26232218713-1
Sn=--26232218713-1
Step 3.2.1.10
Cancel the common factor of -26232 and 2187.
Step 3.2.1.10.1
Factor 3 out of -26232.
Sn=-3(-8744)218713-1
Step 3.2.1.10.2
Cancel the common factors.
Step 3.2.1.10.2.1
Factor 3 out of 2187.
Sn=-3⋅-87443⋅72913-1
Step 3.2.1.10.2.2
Cancel the common factor.
Sn=-3⋅-87443⋅72913-1
Step 3.2.1.10.2.3
Rewrite the expression.
Sn=--874472913-1
Sn=--874472913-1
Sn=--874472913-1
Step 3.2.1.11
Move the negative in front of the fraction.
Sn=--1874472913-1
Step 3.2.1.12
Combine exponents.
Step 3.2.1.12.1
Factor out negative.
Sn=--874472913-1
Step 3.2.1.12.2
Multiply -1 by -1.
Sn=1(8744729)13-1
Step 3.2.1.12.3
Multiply 8744729 by 1.
Sn=874472913-1
Sn=874472913-1
Sn=874472913-1
Step 3.2.2
Simplify the denominator.
Step 3.2.2.1
To write -1 as a fraction with a common denominator, multiply by 33.
Sn=874472913-1⋅33
Step 3.2.2.2
Combine -1 and 33.
Sn=874472913+-1⋅33
Step 3.2.2.3
Combine the numerators over the common denominator.
Sn=87447291-1⋅33
Step 3.2.2.4
Simplify the numerator.
Step 3.2.2.4.1
Multiply -1 by 3.
Sn=87447291-33
Step 3.2.2.4.2
Subtract 3 from 1.
Sn=8744729-23
Sn=8744729-23
Step 3.2.2.5
Move the negative in front of the fraction.
Sn=8744729-23
Sn=8744729-23
Step 3.2.3
Multiply the numerator by the reciprocal of the denominator.
Sn=8744729(-32)
Step 3.2.4
Cancel the common factor of 2.
Step 3.2.4.1
Move the leading negative in -32 into the numerator.
Sn=8744729⋅-32
Step 3.2.4.2
Factor 2 out of 8744.
Sn=2(4372)729⋅-32
Step 3.2.4.3
Cancel the common factor.
Sn=2⋅4372729⋅-32
Step 3.2.4.4
Rewrite the expression.
Sn=4372729⋅-3
Sn=4372729⋅-3
Step 3.2.5
Cancel the common factor of 3.
Step 3.2.5.1
Factor 3 out of 729.
Sn=43723(243)⋅-3
Step 3.2.5.2
Factor 3 out of -3.
Sn=43723⋅243⋅(3⋅-1)
Step 3.2.5.3
Cancel the common factor.
Sn=43723⋅243⋅(3⋅-1)
Step 3.2.5.4
Rewrite the expression.
Sn=4372243⋅-1
Sn=4372243⋅-1
Step 3.2.6
Combine 4372243 and -1.
Sn=4372⋅-1243
Step 3.2.7
Multiply 4372 by -1.
Sn=-4372243
Step 3.2.8
Move the negative in front of the fraction.
Sn=-4372243
Sn=-4372243
Sn=-4372243