Precalculus Examples

Find the Sum of the Series -12-4-4/3-...-4/243
-12-4-43--4243124434243
Step 1
This is a geometric sequence since there is a common ratio between each term. In this case, multiplying the previous term in the sequence by 13 gives the next term. In other words, an=a1rn-1.
Geometric Sequence: r=13
Step 2
Use the formula for a geometric sequence an=a1rn-1 to find the number of terms, n.
Tap for more steps...
Step 2.1
Substitute the values of the first term, last term, and ratio between terms into the formula.
4243=12(13)n-1
Step 2.2
Solve for n.
Tap for more steps...
Step 2.2.1
Rewrite the equation as 12(13)n-1=4243.
12(13)n-1=4243
Step 2.2.2
Divide each term in 12(13)n-1=4243 by 12 and simplify.
Tap for more steps...
Step 2.2.2.1
Divide each term in 12(13)n-1=4243 by 12.
12(13)n-112=424312
Step 2.2.2.2
Simplify the left side.
Tap for more steps...
Step 2.2.2.2.1
Cancel the common factor of 12.
Tap for more steps...
Step 2.2.2.2.1.1
Cancel the common factor.
12(13)n-112=424312
Step 2.2.2.2.1.2
Divide (13)n-1 by 1.
(13)n-1=424312
(13)n-1=424312
Step 2.2.2.2.2
Simplify the expression.
Tap for more steps...
Step 2.2.2.2.2.1
Apply the product rule to 13.
1n-13n-1=424312
Step 2.2.2.2.2.2
One to any power is one.
13n-1=424312
13n-1=424312
13n-1=424312
Step 2.2.2.3
Simplify the right side.
Tap for more steps...
Step 2.2.2.3.1
Multiply the numerator by the reciprocal of the denominator.
13n-1=4243112
Step 2.2.2.3.2
Cancel the common factor of 4.
Tap for more steps...
Step 2.2.2.3.2.1
Factor 4 out of 12.
13n-1=424314(3)
Step 2.2.2.3.2.2
Cancel the common factor.
13n-1=4243143
Step 2.2.2.3.2.3
Rewrite the expression.
13n-1=124313
13n-1=124313
Step 2.2.2.3.3
Multiply 1243 by 13.
13n-1=12433
Step 2.2.2.3.4
Multiply 243 by 3.
13n-1=1729
13n-1=1729
13n-1=1729
Step 2.2.3
Multiply both sides by 3n-1.
13n-13n-1=17293n-1
Step 2.2.4
Simplify.
Tap for more steps...
Step 2.2.4.1
Simplify the left side.
Tap for more steps...
Step 2.2.4.1.1
Cancel the common factor of 3n-1.
Tap for more steps...
Step 2.2.4.1.1.1
Cancel the common factor.
13n-13n-1=17293n-1
Step 2.2.4.1.1.2
Rewrite the expression.
1=17293n-1
1=17293n-1
1=17293n-1
Step 2.2.4.2
Simplify the right side.
Tap for more steps...
Step 2.2.4.2.1
Combine 1729 and 3n-1.
1=3n-1729
1=3n-1729
1=3n-1729
Step 2.2.5
Solve for n.
Tap for more steps...
Step 2.2.5.1
Rewrite the equation as 3n-1729=1.
3n-1729=1
Step 2.2.5.2
Multiply both sides of the equation by 729.
7293n-1729=7291
Step 2.2.5.3
Simplify both sides of the equation.
Tap for more steps...
Step 2.2.5.3.1
Simplify the left side.
Tap for more steps...
Step 2.2.5.3.1.1
Cancel the common factor of 729.
Tap for more steps...
Step 2.2.5.3.1.1.1
Cancel the common factor.
7293n-1729=7291
Step 2.2.5.3.1.1.2
Rewrite the expression.
3n-1=7291
3n-1=7291
3n-1=7291
Step 2.2.5.3.2
Simplify the right side.
Tap for more steps...
Step 2.2.5.3.2.1
Multiply 729 by 1.
3n-1=729
3n-1=729
3n-1=729
Step 2.2.5.4
Create equivalent expressions in the equation that all have equal bases.
3n-1=36
Step 2.2.5.5
Since the bases are the same, then two expressions are only equal if the exponents are also equal.
n-1=6
Step 2.2.5.6
Move all terms not containing n to the right side of the equation.
Tap for more steps...
Step 2.2.5.6.1
Add 1 to both sides of the equation.
n=6+1
Step 2.2.5.6.2
Add 6 and 1.
n=7
n=7
n=7
n=7
n=7
Step 3
Use the formula for the sum of a geometric sequence Sn=a1(rn-1)r-1 to find the sum.
Tap for more steps...
Step 3.1
Substitute the values of the first term, ratio, and the number of terms into the sum formula.
Sn=-12((13)7-1)13-1
Step 3.2
Simplify.
Tap for more steps...
Step 3.2.1
Simplify the numerator.
Tap for more steps...
Step 3.2.1.1
Apply the product rule to 13.
Sn=-12(1737-1)13-1
Step 3.2.1.2
One to any power is one.
Sn=-12(137-1)13-1
Step 3.2.1.3
Raise 3 to the power of 7.
Sn=-12(12187-1)13-1
Step 3.2.1.4
To write -1 as a fraction with a common denominator, multiply by 21872187.
Sn=-12(12187-121872187)13-1
Step 3.2.1.5
Combine -1 and 21872187.
Sn=-12(12187+-121872187)13-1
Step 3.2.1.6
Combine the numerators over the common denominator.
Sn=-121-12187218713-1
Step 3.2.1.7
Simplify the numerator.
Tap for more steps...
Step 3.2.1.7.1
Multiply -1 by 2187.
Sn=-121-2187218713-1
Step 3.2.1.7.2
Subtract 2187 from 1.
Sn=-12(-21862187)13-1
Sn=-12(-21862187)13-1
Step 3.2.1.8
Move the negative in front of the fraction.
Sn=-12-12186218713-1
Step 3.2.1.9
Combine exponents.
Tap for more steps...
Step 3.2.1.9.1
Factor out negative.
Sn=-(-12(21862187))13-1
Step 3.2.1.9.2
Combine -12 and 21862187.
Sn=--122186218713-1
Step 3.2.1.9.3
Multiply -12 by 2186.
Sn=--26232218713-1
Sn=--26232218713-1
Step 3.2.1.10
Cancel the common factor of -26232 and 2187.
Tap for more steps...
Step 3.2.1.10.1
Factor 3 out of -26232.
Sn=-3(-8744)218713-1
Step 3.2.1.10.2
Cancel the common factors.
Tap for more steps...
Step 3.2.1.10.2.1
Factor 3 out of 2187.
Sn=-3-8744372913-1
Step 3.2.1.10.2.2
Cancel the common factor.
Sn=-3-8744372913-1
Step 3.2.1.10.2.3
Rewrite the expression.
Sn=--874472913-1
Sn=--874472913-1
Sn=--874472913-1
Step 3.2.1.11
Move the negative in front of the fraction.
Sn=--1874472913-1
Step 3.2.1.12
Combine exponents.
Tap for more steps...
Step 3.2.1.12.1
Factor out negative.
Sn=--874472913-1
Step 3.2.1.12.2
Multiply -1 by -1.
Sn=1(8744729)13-1
Step 3.2.1.12.3
Multiply 8744729 by 1.
Sn=874472913-1
Sn=874472913-1
Sn=874472913-1
Step 3.2.2
Simplify the denominator.
Tap for more steps...
Step 3.2.2.1
To write -1 as a fraction with a common denominator, multiply by 33.
Sn=874472913-133
Step 3.2.2.2
Combine -1 and 33.
Sn=874472913+-133
Step 3.2.2.3
Combine the numerators over the common denominator.
Sn=87447291-133
Step 3.2.2.4
Simplify the numerator.
Tap for more steps...
Step 3.2.2.4.1
Multiply -1 by 3.
Sn=87447291-33
Step 3.2.2.4.2
Subtract 3 from 1.
Sn=8744729-23
Sn=8744729-23
Step 3.2.2.5
Move the negative in front of the fraction.
Sn=8744729-23
Sn=8744729-23
Step 3.2.3
Multiply the numerator by the reciprocal of the denominator.
Sn=8744729(-32)
Step 3.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.2.4.1
Move the leading negative in -32 into the numerator.
Sn=8744729-32
Step 3.2.4.2
Factor 2 out of 8744.
Sn=2(4372)729-32
Step 3.2.4.3
Cancel the common factor.
Sn=24372729-32
Step 3.2.4.4
Rewrite the expression.
Sn=4372729-3
Sn=4372729-3
Step 3.2.5
Cancel the common factor of 3.
Tap for more steps...
Step 3.2.5.1
Factor 3 out of 729.
Sn=43723(243)-3
Step 3.2.5.2
Factor 3 out of -3.
Sn=43723243(3-1)
Step 3.2.5.3
Cancel the common factor.
Sn=43723243(3-1)
Step 3.2.5.4
Rewrite the expression.
Sn=4372243-1
Sn=4372243-1
Step 3.2.6
Combine 4372243 and -1.
Sn=4372-1243
Step 3.2.7
Multiply 4372 by -1.
Sn=-4372243
Step 3.2.8
Move the negative in front of the fraction.
Sn=-4372243
Sn=-4372243
Sn=-4372243
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]