Enter a problem...
Precalculus Examples
; find
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Move all terms not containing to the right side of the equation.
Step 3.2.1
Subtract from both sides of the equation.
Step 3.2.2
Add to both sides of the equation.
Step 3.3
Multiply both sides of the equation by .
Step 3.4
Simplify both sides of the equation.
Step 3.4.1
Simplify the left side.
Step 3.4.1.1
Cancel the common factor of .
Step 3.4.1.1.1
Cancel the common factor.
Step 3.4.1.1.2
Rewrite the expression.
Step 3.4.2
Simplify the right side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Apply the distributive property.
Step 3.4.2.1.2
Multiply by .
Step 3.5
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 3.6
Simplify the exponent.
Step 3.6.1
Simplify the left side.
Step 3.6.1.1
Simplify .
Step 3.6.1.1.1
Multiply the exponents in .
Step 3.6.1.1.1.1
Apply the power rule and multiply exponents, .
Step 3.6.1.1.1.2
Cancel the common factor of .
Step 3.6.1.1.1.2.1
Cancel the common factor.
Step 3.6.1.1.1.2.2
Rewrite the expression.
Step 3.6.1.1.2
Simplify.
Step 3.6.2
Simplify the right side.
Step 3.6.2.1
Simplify .
Step 3.6.2.1.1
Use the Binomial Theorem.
Step 3.6.2.1.2
Simplify each term.
Step 3.6.2.1.2.1
Raise to the power of .
Step 3.6.2.1.2.2
Raise to the power of .
Step 3.6.2.1.2.3
Multiply by .
Step 3.6.2.1.2.4
Multiply by .
Step 3.6.2.1.2.5
Multiply by .
Step 3.6.2.1.2.6
Apply the product rule to .
Step 3.6.2.1.2.7
Raise to the power of .
Step 3.6.2.1.2.8
Multiply by .
Step 3.6.2.1.2.9
Apply the product rule to .
Step 3.6.2.1.2.10
Raise to the power of .
Step 3.7
Simplify .
Step 3.7.1
Move .
Step 3.7.2
Move .
Step 3.7.3
Reorder and .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Use the Binomial Theorem.
Step 5.2.3.2
Simplify each term.
Step 5.2.3.2.1
Apply the product rule to .
Step 5.2.3.2.2
Simplify the numerator.
Step 5.2.3.2.2.1
Multiply the exponents in .
Step 5.2.3.2.2.1.1
Apply the power rule and multiply exponents, .
Step 5.2.3.2.2.1.2
Cancel the common factor of .
Step 5.2.3.2.2.1.2.1
Cancel the common factor.
Step 5.2.3.2.2.1.2.2
Rewrite the expression.
Step 5.2.3.2.2.2
Simplify.
Step 5.2.3.2.3
Raise to the power of .
Step 5.2.3.2.4
Apply the product rule to .
Step 5.2.3.2.5
Multiply the exponents in .
Step 5.2.3.2.5.1
Apply the power rule and multiply exponents, .
Step 5.2.3.2.5.2
Combine and .
Step 5.2.3.2.6
Raise to the power of .
Step 5.2.3.2.7
Cancel the common factor of .
Step 5.2.3.2.7.1
Factor out of .
Step 5.2.3.2.7.2
Cancel the common factor.
Step 5.2.3.2.7.3
Rewrite the expression.
Step 5.2.3.2.8
Combine and .
Step 5.2.3.2.9
Move to the left of .
Step 5.2.3.2.10
Cancel the common factor of .
Step 5.2.3.2.10.1
Factor out of .
Step 5.2.3.2.10.2
Cancel the common factor.
Step 5.2.3.2.10.3
Rewrite the expression.
Step 5.2.3.2.11
Raise to the power of .
Step 5.2.3.2.12
Combine and .
Step 5.2.3.2.13
Move to the left of .
Step 5.2.3.2.14
Raise to the power of .
Step 5.2.3.3
Apply the distributive property.
Step 5.2.3.4
Simplify.
Step 5.2.3.4.1
Cancel the common factor of .
Step 5.2.3.4.1.1
Cancel the common factor.
Step 5.2.3.4.1.2
Rewrite the expression.
Step 5.2.3.4.2
Cancel the common factor of .
Step 5.2.3.4.2.1
Factor out of .
Step 5.2.3.4.2.2
Cancel the common factor.
Step 5.2.3.4.2.3
Rewrite the expression.
Step 5.2.3.4.3
Multiply by .
Step 5.2.3.4.4
Cancel the common factor of .
Step 5.2.3.4.4.1
Factor out of .
Step 5.2.3.4.4.2
Cancel the common factor.
Step 5.2.3.4.4.3
Rewrite the expression.
Step 5.2.3.4.5
Multiply by .
Step 5.2.3.4.6
Multiply by .
Step 5.2.3.5
Rewrite as .
Step 5.2.3.6
Expand using the FOIL Method.
Step 5.2.3.6.1
Apply the distributive property.
Step 5.2.3.6.2
Apply the distributive property.
Step 5.2.3.6.3
Apply the distributive property.
Step 5.2.3.7
Simplify and combine like terms.
Step 5.2.3.7.1
Simplify each term.
Step 5.2.3.7.1.1
Combine.
Step 5.2.3.7.1.2
Multiply by by adding the exponents.
Step 5.2.3.7.1.2.1
Use the power rule to combine exponents.
Step 5.2.3.7.1.2.2
Combine the numerators over the common denominator.
Step 5.2.3.7.1.2.3
Add and .
Step 5.2.3.7.1.3
Multiply by .
Step 5.2.3.7.1.4
Combine and .
Step 5.2.3.7.1.5
Move to the left of .
Step 5.2.3.7.1.6
Combine and .
Step 5.2.3.7.1.7
Multiply by .
Step 5.2.3.7.2
Add and .
Step 5.2.3.8
Cancel the common factor of .
Step 5.2.3.8.1
Factor out of .
Step 5.2.3.8.2
Cancel the common factor.
Step 5.2.3.8.3
Rewrite the expression.
Step 5.2.3.9
Apply the distributive property.
Step 5.2.3.10
Simplify.
Step 5.2.3.10.1
Cancel the common factor of .
Step 5.2.3.10.1.1
Factor out of .
Step 5.2.3.10.1.2
Cancel the common factor.
Step 5.2.3.10.1.3
Rewrite the expression.
Step 5.2.3.10.2
Cancel the common factor of .
Step 5.2.3.10.2.1
Factor out of .
Step 5.2.3.10.2.2
Cancel the common factor.
Step 5.2.3.10.2.3
Rewrite the expression.
Step 5.2.3.10.3
Multiply by .
Step 5.2.3.10.4
Multiply by .
Step 5.2.3.11
Apply the distributive property.
Step 5.2.3.12
Cancel the common factor of .
Step 5.2.3.12.1
Factor out of .
Step 5.2.3.12.2
Cancel the common factor.
Step 5.2.3.12.3
Rewrite the expression.
Step 5.2.3.13
Multiply by .
Step 5.2.4
Simplify by adding terms.
Step 5.2.4.1
Combine the opposite terms in .
Step 5.2.4.1.1
Subtract from .
Step 5.2.4.1.2
Add and .
Step 5.2.4.1.3
Add and .
Step 5.2.4.1.4
Add and .
Step 5.2.4.1.5
Subtract from .
Step 5.2.4.1.6
Add and .
Step 5.2.4.2
Subtract from .
Step 5.2.4.3
Combine the opposite terms in .
Step 5.2.4.3.1
Add and .
Step 5.2.4.3.2
Add and .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
To write as a fraction with a common denominator, multiply by .
Step 5.3.4
Combine and .
Step 5.3.5
Combine the numerators over the common denominator.
Step 5.3.6
Multiply by .
Step 5.4
Since and , then is the inverse of .