Enter a problem...
Precalculus Examples
; find
Step 1
Step 1.1
Write as an equation.
Step 1.2
Interchange the variables.
Step 1.3
Solve for .
Step 1.3.1
Rewrite the equation as .
Step 1.3.2
Move all terms not containing to the right side of the equation.
Step 1.3.2.1
Add to both sides of the equation.
Step 1.3.2.2
Add to both sides of the equation.
Step 1.3.3
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 1.3.4
Simplify the exponent.
Step 1.3.4.1
Simplify the left side.
Step 1.3.4.1.1
Simplify .
Step 1.3.4.1.1.1
Apply the product rule to .
Step 1.3.4.1.1.2
Raise to the power of .
Step 1.3.4.1.1.3
Multiply the exponents in .
Step 1.3.4.1.1.3.1
Apply the power rule and multiply exponents, .
Step 1.3.4.1.1.3.2
Cancel the common factor of .
Step 1.3.4.1.1.3.2.1
Cancel the common factor.
Step 1.3.4.1.1.3.2.2
Rewrite the expression.
Step 1.3.4.1.1.4
Simplify.
Step 1.3.4.2
Simplify the right side.
Step 1.3.4.2.1
Simplify .
Step 1.3.4.2.1.1
Use the Binomial Theorem.
Step 1.3.4.2.1.2
Simplify each term.
Step 1.3.4.2.1.2.1
Raise to the power of .
Step 1.3.4.2.1.2.2
Raise to the power of .
Step 1.3.4.2.1.2.3
Multiply by .
Step 1.3.4.2.1.2.4
Raise to the power of .
Step 1.3.4.2.1.2.5
Multiply by .
Step 1.3.4.2.1.2.6
Raise to the power of .
Step 1.3.4.2.1.2.7
Multiply by .
Step 1.3.4.2.1.2.8
Multiply by .
Step 1.3.5
Divide each term in by and simplify.
Step 1.3.5.1
Divide each term in by .
Step 1.3.5.2
Simplify the left side.
Step 1.3.5.2.1
Cancel the common factor of .
Step 1.3.5.2.1.1
Cancel the common factor.
Step 1.3.5.2.1.2
Divide by .
Step 1.3.5.3
Simplify the right side.
Step 1.3.5.3.1
Simplify each term.
Step 1.3.5.3.1.1
Divide by .
Step 1.3.5.3.1.2
Cancel the common factor of and .
Step 1.3.5.3.1.2.1
Factor out of .
Step 1.3.5.3.1.2.2
Cancel the common factors.
Step 1.3.5.3.1.2.2.1
Factor out of .
Step 1.3.5.3.1.2.2.2
Cancel the common factor.
Step 1.3.5.3.1.2.2.3
Rewrite the expression.
Step 1.3.5.3.1.3
Cancel the common factor of and .
Step 1.3.5.3.1.3.1
Factor out of .
Step 1.3.5.3.1.3.2
Cancel the common factors.
Step 1.3.5.3.1.3.2.1
Factor out of .
Step 1.3.5.3.1.3.2.2
Cancel the common factor.
Step 1.3.5.3.1.3.2.3
Rewrite the expression.
Step 1.3.5.3.1.4
Cancel the common factor of and .
Step 1.3.5.3.1.4.1
Factor out of .
Step 1.3.5.3.1.4.2
Cancel the common factors.
Step 1.3.5.3.1.4.2.1
Factor out of .
Step 1.3.5.3.1.4.2.2
Cancel the common factor.
Step 1.3.5.3.1.4.2.3
Rewrite the expression.
Step 1.3.5.3.1.5
Cancel the common factor of and .
Step 1.3.5.3.1.5.1
Factor out of .
Step 1.3.5.3.1.5.2
Cancel the common factors.
Step 1.3.5.3.1.5.2.1
Factor out of .
Step 1.3.5.3.1.5.2.2
Cancel the common factor.
Step 1.3.5.3.1.5.2.3
Rewrite the expression.
Step 1.4
Replace with to show the final answer.
Step 1.5
Verify if is the inverse of .
Step 1.5.1
To verify the inverse, check if and .
Step 1.5.2
Evaluate .
Step 1.5.2.1
Set up the composite result function.
Step 1.5.2.2
Evaluate by substituting in the value of into .
Step 1.5.2.3
Simplify each term.
Step 1.5.2.3.1
Factor out of .
Step 1.5.2.3.2
Cancel the common factors.
Step 1.5.2.3.2.1
Factor out of .
Step 1.5.2.3.2.2
Cancel the common factor.
Step 1.5.2.3.2.3
Rewrite the expression.
Step 1.5.2.3.2.4
Divide by .
Step 1.5.2.3.3
Apply the distributive property.
Step 1.5.2.3.4
Multiply by .
Step 1.5.2.3.5
Simplify the numerator.
Step 1.5.2.3.5.1
Factor out of .
Step 1.5.2.3.5.1.1
Factor out of .
Step 1.5.2.3.5.1.2
Factor out of .
Step 1.5.2.3.5.1.3
Factor out of .
Step 1.5.2.3.5.2
Apply the product rule to .
Step 1.5.2.3.5.3
Raise to the power of .
Step 1.5.2.3.5.4
Multiply by .
Step 1.5.2.3.6
Factor out of .
Step 1.5.2.3.7
Cancel the common factors.
Step 1.5.2.3.7.1
Factor out of .
Step 1.5.2.3.7.2
Cancel the common factor.
Step 1.5.2.3.7.3
Rewrite the expression.
Step 1.5.2.3.7.4
Divide by .
Step 1.5.2.3.8
Rewrite as .
Step 1.5.2.3.9
Expand using the FOIL Method.
Step 1.5.2.3.9.1
Apply the distributive property.
Step 1.5.2.3.9.2
Apply the distributive property.
Step 1.5.2.3.9.3
Apply the distributive property.
Step 1.5.2.3.10
Simplify and combine like terms.
Step 1.5.2.3.10.1
Simplify each term.
Step 1.5.2.3.10.1.1
Multiply by by adding the exponents.
Step 1.5.2.3.10.1.1.1
Use the power rule to combine exponents.
Step 1.5.2.3.10.1.1.2
Combine the numerators over the common denominator.
Step 1.5.2.3.10.1.1.3
Add and .
Step 1.5.2.3.10.1.2
Move to the left of .
Step 1.5.2.3.10.1.3
Rewrite as .
Step 1.5.2.3.10.1.4
Rewrite as .
Step 1.5.2.3.10.1.5
Multiply by .
Step 1.5.2.3.10.2
Subtract from .
Step 1.5.2.3.11
Apply the distributive property.
Step 1.5.2.3.12
Simplify.
Step 1.5.2.3.12.1
Multiply by .
Step 1.5.2.3.12.2
Multiply by .
Step 1.5.2.3.13
Simplify the numerator.
Step 1.5.2.3.13.1
Factor out of .
Step 1.5.2.3.13.1.1
Factor out of .
Step 1.5.2.3.13.1.2
Factor out of .
Step 1.5.2.3.13.1.3
Factor out of .
Step 1.5.2.3.13.2
Apply the product rule to .
Step 1.5.2.3.13.3
Raise to the power of .
Step 1.5.2.3.13.4
Multiply by .
Step 1.5.2.3.14
Factor out of .
Step 1.5.2.3.15
Cancel the common factors.
Step 1.5.2.3.15.1
Factor out of .
Step 1.5.2.3.15.2
Cancel the common factor.
Step 1.5.2.3.15.3
Rewrite the expression.
Step 1.5.2.3.15.4
Divide by .
Step 1.5.2.3.16
Use the Binomial Theorem.
Step 1.5.2.3.17
Simplify each term.
Step 1.5.2.3.17.1
Multiply the exponents in .
Step 1.5.2.3.17.1.1
Apply the power rule and multiply exponents, .
Step 1.5.2.3.17.1.2
Combine and .
Step 1.5.2.3.17.2
Multiply the exponents in .
Step 1.5.2.3.17.2.1
Apply the power rule and multiply exponents, .
Step 1.5.2.3.17.2.2
Combine and .
Step 1.5.2.3.17.3
Multiply by .
Step 1.5.2.3.17.4
Raise to the power of .
Step 1.5.2.3.17.5
Multiply by .
Step 1.5.2.3.17.6
Raise to the power of .
Step 1.5.2.3.18
Apply the distributive property.
Step 1.5.2.3.19
Simplify.
Step 1.5.2.3.19.1
Multiply by .
Step 1.5.2.3.19.2
Multiply by .
Step 1.5.2.3.19.3
Multiply by .
Step 1.5.2.3.20
Simplify the numerator.
Step 1.5.2.3.20.1
Factor out of .
Step 1.5.2.3.20.1.1
Factor out of .
Step 1.5.2.3.20.1.2
Factor out of .
Step 1.5.2.3.20.1.3
Factor out of .
Step 1.5.2.3.20.2
Apply the product rule to .
Step 1.5.2.3.20.3
Raise to the power of .
Step 1.5.2.3.20.4
Multiply by .
Step 1.5.2.3.21
Factor out of .
Step 1.5.2.3.22
Cancel the common factors.
Step 1.5.2.3.22.1
Factor out of .
Step 1.5.2.3.22.2
Cancel the common factor.
Step 1.5.2.3.22.3
Rewrite the expression.
Step 1.5.2.3.22.4
Divide by .
Step 1.5.2.3.23
Use the Binomial Theorem.
Step 1.5.2.3.24
Simplify each term.
Step 1.5.2.3.24.1
Multiply the exponents in .
Step 1.5.2.3.24.1.1
Apply the power rule and multiply exponents, .
Step 1.5.2.3.24.1.2
Combine and .
Step 1.5.2.3.24.2
Multiply the exponents in .
Step 1.5.2.3.24.2.1
Apply the power rule and multiply exponents, .
Step 1.5.2.3.24.2.2
Combine and .
Step 1.5.2.3.24.3
Multiply by .
Step 1.5.2.3.24.4
Multiply the exponents in .
Step 1.5.2.3.24.4.1
Apply the power rule and multiply exponents, .
Step 1.5.2.3.24.4.2
Combine and .
Step 1.5.2.3.24.5
Raise to the power of .
Step 1.5.2.3.24.6
Multiply by .
Step 1.5.2.3.24.7
Raise to the power of .
Step 1.5.2.3.24.8
Multiply by .
Step 1.5.2.3.24.9
Raise to the power of .
Step 1.5.2.3.25
Apply the distributive property.
Step 1.5.2.3.26
Simplify.
Step 1.5.2.3.26.1
Multiply by .
Step 1.5.2.3.26.2
Multiply by .
Step 1.5.2.3.26.3
Multiply by .
Step 1.5.2.3.26.4
Multiply by .
Step 1.5.2.3.27
Simplify the numerator.
Step 1.5.2.3.27.1
Factor out of .
Step 1.5.2.3.27.1.1
Factor out of .
Step 1.5.2.3.27.1.2
Factor out of .
Step 1.5.2.3.27.1.3
Factor out of .
Step 1.5.2.3.27.2
Apply the product rule to .
Step 1.5.2.3.27.3
Raise to the power of .
Step 1.5.2.3.28
Cancel the common factor.
Step 1.5.2.3.29
Divide by .
Step 1.5.2.3.30
Use the Binomial Theorem.
Step 1.5.2.3.31
Simplify each term.
Step 1.5.2.3.31.1
Multiply the exponents in .
Step 1.5.2.3.31.1.1
Apply the power rule and multiply exponents, .
Step 1.5.2.3.31.1.2
Cancel the common factor of .
Step 1.5.2.3.31.1.2.1
Cancel the common factor.
Step 1.5.2.3.31.1.2.2
Rewrite the expression.
Step 1.5.2.3.31.2
Simplify.
Step 1.5.2.3.31.3
Multiply the exponents in .
Step 1.5.2.3.31.3.1
Apply the power rule and multiply exponents, .
Step 1.5.2.3.31.3.2
Combine and .
Step 1.5.2.3.31.4
Multiply by .
Step 1.5.2.3.31.5
Multiply the exponents in .
Step 1.5.2.3.31.5.1
Apply the power rule and multiply exponents, .
Step 1.5.2.3.31.5.2
Combine and .
Step 1.5.2.3.31.6
Raise to the power of .
Step 1.5.2.3.31.7
Multiply by .
Step 1.5.2.3.31.8
Multiply the exponents in .
Step 1.5.2.3.31.8.1
Apply the power rule and multiply exponents, .
Step 1.5.2.3.31.8.2
Combine and .
Step 1.5.2.3.31.9
Raise to the power of .
Step 1.5.2.3.31.10
Multiply by .
Step 1.5.2.3.31.11
Raise to the power of .
Step 1.5.2.3.31.12
Multiply by .
Step 1.5.2.3.31.13
Raise to the power of .
Step 1.5.2.4
Simplify by adding terms.
Step 1.5.2.4.1
Combine the opposite terms in .
Step 1.5.2.4.1.1
Subtract from .
Step 1.5.2.4.1.2
Add and .
Step 1.5.2.4.1.3
Add and .
Step 1.5.2.4.1.4
Add and .
Step 1.5.2.4.1.5
Add and .
Step 1.5.2.4.1.6
Add and .
Step 1.5.2.4.1.7
Subtract from .
Step 1.5.2.4.1.8
Add and .
Step 1.5.2.4.1.9
Subtract from .
Step 1.5.2.4.1.10
Add and .
Step 1.5.2.4.1.11
Subtract from .
Step 1.5.2.4.1.12
Add and .
Step 1.5.2.4.2
Subtract from .
Step 1.5.2.4.3
Add and .
Step 1.5.2.4.4
Subtract from .
Step 1.5.2.4.5
Combine the opposite terms in .
Step 1.5.2.4.5.1
Add and .
Step 1.5.2.4.5.2
Add and .
Step 1.5.2.4.6
Subtract from .
Step 1.5.2.4.7
Combine the opposite terms in .
Step 1.5.2.4.7.1
Add and .
Step 1.5.2.4.7.2
Add and .
Step 1.5.3
Evaluate .
Step 1.5.3.1
Set up the composite result function.
Step 1.5.3.2
Evaluate by substituting in the value of into .
Step 1.5.3.3
Move .
Step 1.5.3.4
Move .
Step 1.5.3.5
Move .
Step 1.5.3.6
Move .
Step 1.5.3.7
Reorder and .
Step 1.5.4
Since and , then is the inverse of .
Step 2
Step 2.1
Move .
Step 2.2
Move .
Step 2.3
Move .
Step 2.4
Move .
Step 2.5
Reorder and .