Precalculus Examples

Solve the Function Operation Given that f(x)=x^2-13x+30 and g(x)=x-3 ; find f(x)*g(x) and express the result in standard form.
Given that f(x)=x2-13x+30 and g(x)=x-3 ; find f(x)g(x) and express the result in standard form.
Step 1
Replace the function designators in f(x)(g(x)) with the actual functions.
(x2-13x+30)(x-3)
Step 2
Simplify (x2-13x+30)(x-3).
Tap for more steps...
Step 2.1
Expand (x2-13x+30)(x-3) by multiplying each term in the first expression by each term in the second expression.
x2x+x2-3-13xx-13x-3+30x+30-3
Step 2.2
Simplify terms.
Tap for more steps...
Step 2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.1
Multiply x2 by x by adding the exponents.
Tap for more steps...
Step 2.2.1.1.1
Multiply x2 by x.
Tap for more steps...
Step 2.2.1.1.1.1
Raise x to the power of 1.
x2x1+x2-3-13xx-13x-3+30x+30-3
Step 2.2.1.1.1.2
Use the power rule aman=am+n to combine exponents.
x2+1+x2-3-13xx-13x-3+30x+30-3
x2+1+x2-3-13xx-13x-3+30x+30-3
Step 2.2.1.1.2
Add 2 and 1.
x3+x2-3-13xx-13x-3+30x+30-3
x3+x2-3-13xx-13x-3+30x+30-3
Step 2.2.1.2
Move -3 to the left of x2.
x3-3x2-13xx-13x-3+30x+30-3
Step 2.2.1.3
Multiply x by x by adding the exponents.
Tap for more steps...
Step 2.2.1.3.1
Move x.
x3-3x2-13(xx)-13x-3+30x+30-3
Step 2.2.1.3.2
Multiply x by x.
x3-3x2-13x2-13x-3+30x+30-3
x3-3x2-13x2-13x-3+30x+30-3
Step 2.2.1.4
Multiply -3 by -13.
x3-3x2-13x2+39x+30x+30-3
Step 2.2.1.5
Multiply 30 by -3.
x3-3x2-13x2+39x+30x-90
x3-3x2-13x2+39x+30x-90
Step 2.2.2
Simplify by adding terms.
Tap for more steps...
Step 2.2.2.1
Subtract 13x2 from -3x2.
x3-16x2+39x+30x-90
Step 2.2.2.2
Add 39x and 30x.
x3-16x2+69x-90
x3-16x2+69x-90
x3-16x2+69x-90
x3-16x2+69x-90
 [x2  12  π  xdx ]