Enter a problem...
Precalculus Examples
; find
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Solve for .
Step 3.2.1
Subtract from both sides of the equation.
Step 3.2.2
Multiply both sides of the equation by .
Step 3.2.3
Simplify both sides of the equation.
Step 3.2.3.1
Simplify the left side.
Step 3.2.3.1.1
Cancel the common factor of .
Step 3.2.3.1.1.1
Cancel the common factor.
Step 3.2.3.1.1.2
Rewrite the expression.
Step 3.2.3.2
Simplify the right side.
Step 3.2.3.2.1
Simplify .
Step 3.2.3.2.1.1
Apply the distributive property.
Step 3.2.3.2.1.2
Multiply by .
Step 3.3
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 3.4
Simplify each side of the equation.
Step 3.4.1
Use to rewrite as .
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Multiply the exponents in .
Step 3.4.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.4.2.1.1.2
Cancel the common factor of .
Step 3.4.2.1.1.2.1
Cancel the common factor.
Step 3.4.2.1.1.2.2
Rewrite the expression.
Step 3.4.2.1.2
Simplify.
Step 3.4.3
Simplify the right side.
Step 3.4.3.1
Simplify .
Step 3.4.3.1.1
Use the Binomial Theorem.
Step 3.4.3.1.2
Simplify each term.
Step 3.4.3.1.2.1
Apply the product rule to .
Step 3.4.3.1.2.2
Raise to the power of .
Step 3.4.3.1.2.3
Apply the product rule to .
Step 3.4.3.1.2.4
Raise to the power of .
Step 3.4.3.1.2.5
Multiply by .
Step 3.4.3.1.2.6
Multiply by .
Step 3.4.3.1.2.7
Multiply by .
Step 3.4.3.1.2.8
Raise to the power of .
Step 3.4.3.1.2.9
Multiply by .
Step 3.4.3.1.2.10
Raise to the power of .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Use the Binomial Theorem.
Step 5.2.3.2
Simplify each term.
Step 5.2.3.2.1
Apply the product rule to .
Step 5.2.3.2.2
Rewrite as .
Step 5.2.3.2.2.1
Use to rewrite as .
Step 5.2.3.2.2.2
Apply the power rule and multiply exponents, .
Step 5.2.3.2.2.3
Combine and .
Step 5.2.3.2.2.4
Cancel the common factor of .
Step 5.2.3.2.2.4.1
Cancel the common factor.
Step 5.2.3.2.2.4.2
Rewrite the expression.
Step 5.2.3.2.2.5
Simplify.
Step 5.2.3.2.3
Raise to the power of .
Step 5.2.3.2.4
Apply the product rule to .
Step 5.2.3.2.5
Rewrite as .
Step 5.2.3.2.6
Raise to the power of .
Step 5.2.3.2.7
Combine and .
Step 5.2.3.2.8
Multiply .
Step 5.2.3.2.8.1
Combine and .
Step 5.2.3.2.8.2
Multiply by .
Step 5.2.3.2.9
Combine and .
Step 5.2.3.2.10
Raise to the power of .
Step 5.2.3.2.11
Multiply .
Step 5.2.3.2.11.1
Combine and .
Step 5.2.3.2.11.2
Multiply by .
Step 5.2.3.2.12
Raise to the power of .
Step 5.2.3.3
Apply the distributive property.
Step 5.2.3.4
Simplify.
Step 5.2.3.4.1
Cancel the common factor of .
Step 5.2.3.4.1.1
Cancel the common factor.
Step 5.2.3.4.1.2
Rewrite the expression.
Step 5.2.3.4.2
Cancel the common factor of .
Step 5.2.3.4.2.1
Factor out of .
Step 5.2.3.4.2.2
Cancel the common factor.
Step 5.2.3.4.2.3
Rewrite the expression.
Step 5.2.3.4.3
Multiply by .
Step 5.2.3.4.4
Cancel the common factor of .
Step 5.2.3.4.4.1
Factor out of .
Step 5.2.3.4.4.2
Cancel the common factor.
Step 5.2.3.4.4.3
Rewrite the expression.
Step 5.2.3.4.5
Multiply by .
Step 5.2.3.4.6
Multiply by .
Step 5.2.3.5
Rewrite as .
Step 5.2.3.6
Expand using the FOIL Method.
Step 5.2.3.6.1
Apply the distributive property.
Step 5.2.3.6.2
Apply the distributive property.
Step 5.2.3.6.3
Apply the distributive property.
Step 5.2.3.7
Simplify and combine like terms.
Step 5.2.3.7.1
Simplify each term.
Step 5.2.3.7.1.1
Multiply .
Step 5.2.3.7.1.1.1
Multiply by .
Step 5.2.3.7.1.1.2
Raise to the power of .
Step 5.2.3.7.1.1.3
Raise to the power of .
Step 5.2.3.7.1.1.4
Use the power rule to combine exponents.
Step 5.2.3.7.1.1.5
Add and .
Step 5.2.3.7.1.1.6
Multiply by .
Step 5.2.3.7.1.2
Rewrite as .
Step 5.2.3.7.1.3
Combine and .
Step 5.2.3.7.1.4
Move to the left of .
Step 5.2.3.7.1.5
Combine and .
Step 5.2.3.7.1.6
Multiply by .
Step 5.2.3.7.2
Add and .
Step 5.2.3.8
Cancel the common factor of .
Step 5.2.3.8.1
Cancel the common factor.
Step 5.2.3.8.2
Rewrite the expression.
Step 5.2.3.9
Apply the distributive property.
Step 5.2.3.10
Simplify.
Step 5.2.3.10.1
Cancel the common factor of .
Step 5.2.3.10.1.1
Factor out of .
Step 5.2.3.10.1.2
Cancel the common factor.
Step 5.2.3.10.1.3
Rewrite the expression.
Step 5.2.3.10.2
Multiply by .
Step 5.2.3.10.3
Multiply by .
Step 5.2.3.11
Apply the distributive property.
Step 5.2.3.12
Cancel the common factor of .
Step 5.2.3.12.1
Factor out of .
Step 5.2.3.12.2
Cancel the common factor.
Step 5.2.3.12.3
Rewrite the expression.
Step 5.2.3.13
Multiply by .
Step 5.2.4
Simplify by adding terms.
Step 5.2.4.1
Combine the opposite terms in .
Step 5.2.4.1.1
Subtract from .
Step 5.2.4.1.2
Add and .
Step 5.2.4.1.3
Add and .
Step 5.2.4.1.4
Add and .
Step 5.2.4.1.5
Subtract from .
Step 5.2.4.1.6
Add and .
Step 5.2.4.2
Subtract from .
Step 5.2.4.3
Combine the opposite terms in .
Step 5.2.4.3.1
Add and .
Step 5.2.4.3.2
Add and .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify each term.
Step 5.3.3.1
Simplify the numerator.
Step 5.3.3.1.1
Factor out of .
Step 5.3.3.1.1.1
Factor out of .
Step 5.3.3.1.1.2
Factor out of .
Step 5.3.3.1.1.3
Factor out of .
Step 5.3.3.1.1.4
Factor out of .
Step 5.3.3.1.1.5
Factor out of .
Step 5.3.3.1.1.6
Factor out of .
Step 5.3.3.1.1.7
Factor out of .
Step 5.3.3.1.2
Rewrite as .
Step 5.3.3.1.2.1
Rewrite as .
Step 5.3.3.1.2.2
Rewrite as .
Step 5.3.3.1.3
Pull terms out from under the radical.
Step 5.3.3.1.4
Raise to the power of .
Step 5.3.3.1.5
Rewrite in a factored form.
Step 5.3.3.1.5.1
Factor using the rational roots test.
Step 5.3.3.1.5.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 5.3.3.1.5.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 5.3.3.1.5.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 5.3.3.1.5.1.3.1
Substitute into the polynomial.
Step 5.3.3.1.5.1.3.2
Raise to the power of .
Step 5.3.3.1.5.1.3.3
Raise to the power of .
Step 5.3.3.1.5.1.3.4
Multiply by .
Step 5.3.3.1.5.1.3.5
Subtract from .
Step 5.3.3.1.5.1.3.6
Multiply by .
Step 5.3.3.1.5.1.3.7
Add and .
Step 5.3.3.1.5.1.3.8
Subtract from .
Step 5.3.3.1.5.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 5.3.3.1.5.1.5
Divide by .
Step 5.3.3.1.5.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
- | - | + | - |
Step 5.3.3.1.5.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
- | - | + | - |
Step 5.3.3.1.5.1.5.3
Multiply the new quotient term by the divisor.
- | - | + | - | ||||||||
+ | - |
Step 5.3.3.1.5.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
- | - | + | - | ||||||||
- | + |
Step 5.3.3.1.5.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | - | + | - | ||||||||
- | + | ||||||||||
- |
Step 5.3.3.1.5.1.5.6
Pull the next terms from the original dividend down into the current dividend.
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Step 5.3.3.1.5.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Step 5.3.3.1.5.1.5.8
Multiply the new quotient term by the divisor.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
Step 5.3.3.1.5.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
Step 5.3.3.1.5.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ |
Step 5.3.3.1.5.1.5.11
Pull the next terms from the original dividend down into the current dividend.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Step 5.3.3.1.5.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Step 5.3.3.1.5.1.5.13
Multiply the new quotient term by the divisor.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
+ | - |
Step 5.3.3.1.5.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + |
Step 5.3.3.1.5.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Step 5.3.3.1.5.1.5.16
Since the remander is , the final answer is the quotient.
Step 5.3.3.1.5.1.6
Write as a set of factors.
Step 5.3.3.1.5.2
Factor using the perfect square rule.
Step 5.3.3.1.5.2.1
Rewrite as .
Step 5.3.3.1.5.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 5.3.3.1.5.2.3
Rewrite the polynomial.
Step 5.3.3.1.5.2.4
Factor using the perfect square trinomial rule , where and .
Step 5.3.3.1.5.3
Combine like factors.
Step 5.3.3.1.5.3.1
Raise to the power of .
Step 5.3.3.1.5.3.2
Use the power rule to combine exponents.
Step 5.3.3.1.5.3.3
Add and .
Step 5.3.3.1.6
Pull terms out from under the radical, assuming real numbers.
Step 5.3.3.1.7
Apply the distributive property.
Step 5.3.3.1.8
Multiply by .
Step 5.3.3.1.9
Factor out of .
Step 5.3.3.1.9.1
Factor out of .
Step 5.3.3.1.9.2
Factor out of .
Step 5.3.3.1.9.3
Factor out of .
Step 5.3.3.2
Cancel the common factor of .
Step 5.3.3.2.1
Cancel the common factor.
Step 5.3.3.2.2
Divide by .
Step 5.3.4
Combine the opposite terms in .
Step 5.3.4.1
Add and .
Step 5.3.4.2
Add and .
Step 5.4
Since and , then is the inverse of .