Enter a problem...
Precalculus Examples
; find
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Multiply both sides of the equation by .
Step 3.3
Simplify the left side.
Step 3.3.1
Cancel the common factor of .
Step 3.3.1.1
Cancel the common factor.
Step 3.3.1.2
Rewrite the expression.
Step 3.4
Add to both sides of the equation.
Step 3.5
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 3.6
Simplify each side of the equation.
Step 3.6.1
Use to rewrite as .
Step 3.6.2
Simplify the left side.
Step 3.6.2.1
Simplify .
Step 3.6.2.1.1
Multiply the exponents in .
Step 3.6.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.6.2.1.1.2
Cancel the common factor of .
Step 3.6.2.1.1.2.1
Cancel the common factor.
Step 3.6.2.1.1.2.2
Rewrite the expression.
Step 3.6.2.1.2
Simplify.
Step 3.6.3
Simplify the right side.
Step 3.6.3.1
Simplify .
Step 3.6.3.1.1
Use the Binomial Theorem.
Step 3.6.3.1.2
Simplify each term.
Step 3.6.3.1.2.1
Apply the product rule to .
Step 3.6.3.1.2.2
Raise to the power of .
Step 3.6.3.1.2.3
Apply the product rule to .
Step 3.6.3.1.2.4
Raise to the power of .
Step 3.6.3.1.2.5
Multiply by .
Step 3.6.3.1.2.6
Multiply by .
Step 3.6.3.1.2.7
Multiply by .
Step 3.6.3.1.2.8
Raise to the power of .
Step 3.6.3.1.2.9
Multiply by .
Step 3.6.3.1.2.10
Raise to the power of .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Apply the product rule to .
Step 5.2.3.2
Raise to the power of .
Step 5.2.3.3
Cancel the common factor of .
Step 5.2.3.3.1
Cancel the common factor.
Step 5.2.3.3.2
Rewrite the expression.
Step 5.2.3.4
Use the Binomial Theorem.
Step 5.2.3.5
Simplify each term.
Step 5.2.3.5.1
Rewrite as .
Step 5.2.3.5.1.1
Use to rewrite as .
Step 5.2.3.5.1.2
Apply the power rule and multiply exponents, .
Step 5.2.3.5.1.3
Combine and .
Step 5.2.3.5.1.4
Cancel the common factor of .
Step 5.2.3.5.1.4.1
Cancel the common factor.
Step 5.2.3.5.1.4.2
Rewrite the expression.
Step 5.2.3.5.1.5
Simplify.
Step 5.2.3.5.2
Rewrite as .
Step 5.2.3.5.3
Multiply by .
Step 5.2.3.5.4
Raise to the power of .
Step 5.2.3.5.5
Multiply by .
Step 5.2.3.5.6
Raise to the power of .
Step 5.2.3.6
Apply the product rule to .
Step 5.2.3.7
Raise to the power of .
Step 5.2.3.8
Cancel the common factor of .
Step 5.2.3.8.1
Factor out of .
Step 5.2.3.8.2
Cancel the common factor.
Step 5.2.3.8.3
Rewrite the expression.
Step 5.2.3.9
Rewrite as .
Step 5.2.3.10
Expand using the FOIL Method.
Step 5.2.3.10.1
Apply the distributive property.
Step 5.2.3.10.2
Apply the distributive property.
Step 5.2.3.10.3
Apply the distributive property.
Step 5.2.3.11
Simplify and combine like terms.
Step 5.2.3.11.1
Simplify each term.
Step 5.2.3.11.1.1
Multiply .
Step 5.2.3.11.1.1.1
Raise to the power of .
Step 5.2.3.11.1.1.2
Raise to the power of .
Step 5.2.3.11.1.1.3
Use the power rule to combine exponents.
Step 5.2.3.11.1.1.4
Add and .
Step 5.2.3.11.1.2
Rewrite as .
Step 5.2.3.11.1.3
Move to the left of .
Step 5.2.3.11.1.4
Multiply by .
Step 5.2.3.11.2
Subtract from .
Step 5.2.3.12
Apply the distributive property.
Step 5.2.3.13
Simplify.
Step 5.2.3.13.1
Multiply by .
Step 5.2.3.13.2
Multiply by .
Step 5.2.3.14
Cancel the common factor of .
Step 5.2.3.14.1
Factor out of .
Step 5.2.3.14.2
Cancel the common factor.
Step 5.2.3.14.3
Rewrite the expression.
Step 5.2.3.15
Apply the distributive property.
Step 5.2.3.16
Multiply by .
Step 5.2.4
Simplify by adding terms.
Step 5.2.4.1
Combine the opposite terms in .
Step 5.2.4.1.1
Add and .
Step 5.2.4.1.2
Add and .
Step 5.2.4.1.3
Subtract from .
Step 5.2.4.1.4
Add and .
Step 5.2.4.1.5
Add and .
Step 5.2.4.1.6
Add and .
Step 5.2.4.2
Subtract from .
Step 5.2.4.3
Combine the opposite terms in .
Step 5.2.4.3.1
Add and .
Step 5.2.4.3.2
Add and .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.4
Since and , then is the inverse of .