Precalculus Examples

Find the Asymptotes y=((x+3)(x-4)(x+7))/(x-4)
Step 1
Find where the expression is undefined.
Step 2
The vertical asymptotes occur at areas of infinite discontinuity.
No Vertical Asymptotes
Step 3
Consider the rational function where is the degree of the numerator and is the degree of the denominator.
1. If , then the x-axis, , is the horizontal asymptote.
2. If , then the horizontal asymptote is the line .
3. If , then there is no horizontal asymptote (there is an oblique asymptote).
Step 4
Find and .
Step 5
Since , there is no horizontal asymptote.
No Horizontal Asymptotes
Step 6
Find the oblique asymptote using polynomial division.
Tap for more steps...
Step 6.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
-+--
Step 6.2
Divide the highest order term in the dividend by the highest order term in divisor .
-+--
Step 6.3
Multiply the new quotient term by the divisor.
-+--
+-
Step 6.4
The expression needs to be subtracted from the dividend, so change all the signs in
-+--
-+
Step 6.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+--
-+
+
Step 6.6
Pull the next terms from the original dividend down into the current dividend.
-+--
-+
+-
Step 6.7
Divide the highest order term in the dividend by the highest order term in divisor .
+
-+--
-+
+-
Step 6.8
Multiply the new quotient term by the divisor.
+
-+--
-+
+-
+-
Step 6.9
The expression needs to be subtracted from the dividend, so change all the signs in
+
-+--
-+
+-
-+
Step 6.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+
-+--
-+
+-
-+
+
Step 6.11
Pull the next terms from the original dividend down into the current dividend.
+
-+--
-+
+-
-+
+-
Step 6.12
Divide the highest order term in the dividend by the highest order term in divisor .
++
-+--
-+
+-
-+
+-
Step 6.13
Multiply the new quotient term by the divisor.
++
-+--
-+
+-
-+
+-
+-
Step 6.14
The expression needs to be subtracted from the dividend, so change all the signs in
++
-+--
-+
+-
-+
+-
-+
Step 6.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++
-+--
-+
+-
-+
+-
-+
Step 6.16
Since the remander is , the final answer is the quotient.
Step 6.17
The oblique asymptote is the polynomial portion of the long division result.
Step 7
This is the set of all asymptotes.
No Vertical Asymptotes
No Horizontal Asymptotes
Oblique Asymptotes:
Step 8