Precalculus Examples

Solve the Function Operation f(x) = fifth root of x-1 ; find f^-1(x)
; find
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Rewrite the equation as .
Step 3.2
To remove the radical on the left side of the equation, raise both sides of the equation to the power of .
Step 3.3
Simplify each side of the equation.
Tap for more steps...
Step 3.3.1
Use to rewrite as .
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Simplify .
Tap for more steps...
Step 3.3.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 3.3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.3.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.1.1.2.1
Cancel the common factor.
Step 3.3.2.1.1.2.2
Rewrite the expression.
Step 3.3.2.1.2
Simplify.
Step 3.4
Add to both sides of the equation.
Step 4
Replace with to show the final answer.
Step 5
Verify if is the inverse of .
Tap for more steps...
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Tap for more steps...
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Rewrite as .
Tap for more steps...
Step 5.2.3.1
Use to rewrite as .
Step 5.2.3.2
Apply the power rule and multiply exponents, .
Step 5.2.3.3
Combine and .
Step 5.2.3.4
Cancel the common factor of .
Tap for more steps...
Step 5.2.3.4.1
Cancel the common factor.
Step 5.2.3.4.2
Rewrite the expression.
Step 5.2.3.5
Simplify.
Step 5.2.4
Combine the opposite terms in .
Tap for more steps...
Step 5.2.4.1
Add and .
Step 5.2.4.2
Add and .
Step 5.3
Evaluate .
Tap for more steps...
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Subtract from .
Step 5.3.4
Add and .
Step 5.3.5
Pull terms out from under the radical, assuming real numbers.
Step 5.4
Since and , then is the inverse of .