Precalculus Examples

Find the Domain f(x)=1/( square root of 7x^2+20x-3)
Step 1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 2
Solve for .
Tap for more steps...
Step 2.1
Convert the inequality to an equation.
Step 2.2
Factor by grouping.
Tap for more steps...
Step 2.2.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 2.2.1.1
Factor out of .
Step 2.2.1.2
Rewrite as plus
Step 2.2.1.3
Apply the distributive property.
Step 2.2.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 2.2.2.1
Group the first two terms and the last two terms.
Step 2.2.2.2
Factor out the greatest common factor (GCF) from each group.
Step 2.2.3
Factor the polynomial by factoring out the greatest common factor, .
Step 2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4
Set equal to and solve for .
Tap for more steps...
Step 2.4.1
Set equal to .
Step 2.4.2
Solve for .
Tap for more steps...
Step 2.4.2.1
Add to both sides of the equation.
Step 2.4.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.4.2.2.1
Divide each term in by .
Step 2.4.2.2.2
Simplify the left side.
Tap for more steps...
Step 2.4.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.4.2.2.2.1.1
Cancel the common factor.
Step 2.4.2.2.2.1.2
Divide by .
Step 2.5
Set equal to and solve for .
Tap for more steps...
Step 2.5.1
Set equal to .
Step 2.5.2
Subtract from both sides of the equation.
Step 2.6
The final solution is all the values that make true.
Step 2.7
Use each root to create test intervals.
Step 2.8
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Tap for more steps...
Step 2.8.1
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 2.8.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 2.8.1.2
Replace with in the original inequality.
Step 2.8.1.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 2.8.2
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 2.8.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 2.8.2.2
Replace with in the original inequality.
Step 2.8.2.3
The left side is less than the right side , which means that the given statement is false.
False
False
Step 2.8.3
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 2.8.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 2.8.3.2
Replace with in the original inequality.
Step 2.8.3.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 2.8.4
Compare the intervals to determine which ones satisfy the original inequality.
True
False
True
True
False
True
Step 2.9
The solution consists of all of the true intervals.
or
or
Step 3
Set the denominator in equal to to find where the expression is undefined.
Step 4
Solve for .
Tap for more steps...
Step 4.1
To remove the radical on the left side of the equation, square both sides of the equation.
Step 4.2
Simplify each side of the equation.
Tap for more steps...
Step 4.2.1
Use to rewrite as .
Step 4.2.2
Simplify the left side.
Tap for more steps...
Step 4.2.2.1
Simplify .
Tap for more steps...
Step 4.2.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 4.2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 4.2.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 4.2.2.1.1.2.1
Cancel the common factor.
Step 4.2.2.1.1.2.2
Rewrite the expression.
Step 4.2.2.1.2
Simplify.
Step 4.2.3
Simplify the right side.
Tap for more steps...
Step 4.2.3.1
Raising to any positive power yields .
Step 4.3
Solve for .
Tap for more steps...
Step 4.3.1
Factor by grouping.
Tap for more steps...
Step 4.3.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 4.3.1.1.1
Factor out of .
Step 4.3.1.1.2
Rewrite as plus
Step 4.3.1.1.3
Apply the distributive property.
Step 4.3.1.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 4.3.1.2.1
Group the first two terms and the last two terms.
Step 4.3.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 4.3.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 4.3.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.3.3
Set equal to and solve for .
Tap for more steps...
Step 4.3.3.1
Set equal to .
Step 4.3.3.2
Solve for .
Tap for more steps...
Step 4.3.3.2.1
Add to both sides of the equation.
Step 4.3.3.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 4.3.3.2.2.1
Divide each term in by .
Step 4.3.3.2.2.2
Simplify the left side.
Tap for more steps...
Step 4.3.3.2.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 4.3.3.2.2.2.1.1
Cancel the common factor.
Step 4.3.3.2.2.2.1.2
Divide by .
Step 4.3.4
Set equal to and solve for .
Tap for more steps...
Step 4.3.4.1
Set equal to .
Step 4.3.4.2
Subtract from both sides of the equation.
Step 4.3.5
The final solution is all the values that make true.
Step 5
The domain is all values of that make the expression defined.
Interval Notation:
Set-Builder Notation:
Step 6