Enter a problem...
Precalculus Examples
Step 1
Set the denominator in equal to to find where the expression is undefined.
Step 2
Step 2.1
Use the quadratic formula to find the solutions.
Step 2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 2.3
Simplify.
Step 2.3.1
Simplify the numerator.
Step 2.3.1.1
Apply the distributive property.
Step 2.3.1.2
Multiply by .
Step 2.3.1.3
Rewrite as .
Step 2.3.1.4
Expand using the FOIL Method.
Step 2.3.1.4.1
Apply the distributive property.
Step 2.3.1.4.2
Apply the distributive property.
Step 2.3.1.4.3
Apply the distributive property.
Step 2.3.1.5
Simplify and combine like terms.
Step 2.3.1.5.1
Simplify each term.
Step 2.3.1.5.1.1
Multiply by .
Step 2.3.1.5.1.2
Multiply by .
Step 2.3.1.5.1.3
Multiply by .
Step 2.3.1.5.1.4
Multiply by .
Step 2.3.1.5.2
Add and .
Step 2.3.1.6
Multiply by .
Step 2.3.1.7
Subtract from .
Step 2.3.1.8
Reorder terms.
Step 2.3.1.9
Factor using the perfect square rule.
Step 2.3.1.9.1
Rewrite as .
Step 2.3.1.9.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 2.3.1.9.3
Rewrite the polynomial.
Step 2.3.1.9.4
Factor using the perfect square trinomial rule , where and .
Step 2.3.1.10
Pull terms out from under the radical, assuming positive real numbers.
Step 2.3.2
Multiply by .
Step 2.4
Simplify the expression to solve for the portion of the .
Step 2.4.1
Simplify the numerator.
Step 2.4.1.1
Apply the distributive property.
Step 2.4.1.2
Multiply by .
Step 2.4.1.3
Rewrite as .
Step 2.4.1.4
Expand using the FOIL Method.
Step 2.4.1.4.1
Apply the distributive property.
Step 2.4.1.4.2
Apply the distributive property.
Step 2.4.1.4.3
Apply the distributive property.
Step 2.4.1.5
Simplify and combine like terms.
Step 2.4.1.5.1
Simplify each term.
Step 2.4.1.5.1.1
Multiply by .
Step 2.4.1.5.1.2
Multiply by .
Step 2.4.1.5.1.3
Multiply by .
Step 2.4.1.5.1.4
Multiply by .
Step 2.4.1.5.2
Add and .
Step 2.4.1.6
Multiply by .
Step 2.4.1.7
Subtract from .
Step 2.4.1.8
Reorder terms.
Step 2.4.1.9
Factor using the perfect square rule.
Step 2.4.1.9.1
Rewrite as .
Step 2.4.1.9.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 2.4.1.9.3
Rewrite the polynomial.
Step 2.4.1.9.4
Factor using the perfect square trinomial rule , where and .
Step 2.4.1.10
Pull terms out from under the radical, assuming positive real numbers.
Step 2.4.2
Multiply by .
Step 2.4.3
Change the to .
Step 2.4.4
Simplify the numerator.
Step 2.4.4.1
Subtract from .
Step 2.4.4.2
Add and .
Step 2.4.4.3
Subtract from .
Step 2.4.5
Divide by .
Step 2.5
Simplify the expression to solve for the portion of the .
Step 2.5.1
Simplify the numerator.
Step 2.5.1.1
Apply the distributive property.
Step 2.5.1.2
Multiply by .
Step 2.5.1.3
Rewrite as .
Step 2.5.1.4
Expand using the FOIL Method.
Step 2.5.1.4.1
Apply the distributive property.
Step 2.5.1.4.2
Apply the distributive property.
Step 2.5.1.4.3
Apply the distributive property.
Step 2.5.1.5
Simplify and combine like terms.
Step 2.5.1.5.1
Simplify each term.
Step 2.5.1.5.1.1
Multiply by .
Step 2.5.1.5.1.2
Multiply by .
Step 2.5.1.5.1.3
Multiply by .
Step 2.5.1.5.1.4
Multiply by .
Step 2.5.1.5.2
Add and .
Step 2.5.1.6
Multiply by .
Step 2.5.1.7
Subtract from .
Step 2.5.1.8
Reorder terms.
Step 2.5.1.9
Factor using the perfect square rule.
Step 2.5.1.9.1
Rewrite as .
Step 2.5.1.9.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 2.5.1.9.3
Rewrite the polynomial.
Step 2.5.1.9.4
Factor using the perfect square trinomial rule , where and .
Step 2.5.1.10
Pull terms out from under the radical, assuming positive real numbers.
Step 2.5.2
Multiply by .
Step 2.5.3
Change the to .
Step 2.5.4
Simplify the numerator.
Step 2.5.4.1
Apply the distributive property.
Step 2.5.4.2
Multiply by .
Step 2.5.4.3
Add and .
Step 2.5.4.4
Add and .
Step 2.5.4.5
Subtract from .
Step 2.5.5
Cancel the common factor of and .
Step 2.5.5.1
Factor out of .
Step 2.5.5.2
Cancel the common factors.
Step 2.5.5.2.1
Factor out of .
Step 2.5.5.2.2
Cancel the common factor.
Step 2.5.5.2.3
Rewrite the expression.
Step 2.5.5.2.4
Divide by .
Step 2.6
The final answer is the combination of both solutions.
Step 3
Set the denominator in equal to to find where the expression is undefined.
Step 4
Step 4.1
Use the quadratic formula to find the solutions.
Step 4.2
Substitute the values , , and into the quadratic formula and solve for .
Step 4.3
Simplify.
Step 4.3.1
Simplify the numerator.
Step 4.3.1.1
Apply the distributive property.
Step 4.3.1.2
Multiply by .
Step 4.3.1.3
Rewrite as .
Step 4.3.1.4
Expand using the FOIL Method.
Step 4.3.1.4.1
Apply the distributive property.
Step 4.3.1.4.2
Apply the distributive property.
Step 4.3.1.4.3
Apply the distributive property.
Step 4.3.1.5
Simplify and combine like terms.
Step 4.3.1.5.1
Simplify each term.
Step 4.3.1.5.1.1
Multiply by .
Step 4.3.1.5.1.2
Rewrite as .
Step 4.3.1.5.1.3
Move to the left of .
Step 4.3.1.5.1.4
Rewrite as .
Step 4.3.1.5.1.5
Multiply by .
Step 4.3.1.5.2
Subtract from .
Step 4.3.1.6
Multiply .
Step 4.3.1.6.1
Multiply by .
Step 4.3.1.6.2
Multiply by .
Step 4.3.1.7
Add and .
Step 4.3.1.8
Reorder terms.
Step 4.3.1.9
Factor using the perfect square rule.
Step 4.3.1.9.1
Rewrite as .
Step 4.3.1.9.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 4.3.1.9.3
Rewrite the polynomial.
Step 4.3.1.9.4
Factor using the perfect square trinomial rule , where and .
Step 4.3.1.10
Pull terms out from under the radical, assuming positive real numbers.
Step 4.3.2
Multiply by .
Step 4.4
Simplify the expression to solve for the portion of the .
Step 4.4.1
Simplify the numerator.
Step 4.4.1.1
Apply the distributive property.
Step 4.4.1.2
Multiply by .
Step 4.4.1.3
Rewrite as .
Step 4.4.1.4
Expand using the FOIL Method.
Step 4.4.1.4.1
Apply the distributive property.
Step 4.4.1.4.2
Apply the distributive property.
Step 4.4.1.4.3
Apply the distributive property.
Step 4.4.1.5
Simplify and combine like terms.
Step 4.4.1.5.1
Simplify each term.
Step 4.4.1.5.1.1
Multiply by .
Step 4.4.1.5.1.2
Rewrite as .
Step 4.4.1.5.1.3
Move to the left of .
Step 4.4.1.5.1.4
Rewrite as .
Step 4.4.1.5.1.5
Multiply by .
Step 4.4.1.5.2
Subtract from .
Step 4.4.1.6
Multiply .
Step 4.4.1.6.1
Multiply by .
Step 4.4.1.6.2
Multiply by .
Step 4.4.1.7
Add and .
Step 4.4.1.8
Reorder terms.
Step 4.4.1.9
Factor using the perfect square rule.
Step 4.4.1.9.1
Rewrite as .
Step 4.4.1.9.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 4.4.1.9.3
Rewrite the polynomial.
Step 4.4.1.9.4
Factor using the perfect square trinomial rule , where and .
Step 4.4.1.10
Pull terms out from under the radical, assuming positive real numbers.
Step 4.4.2
Multiply by .
Step 4.4.3
Change the to .
Step 4.4.4
Simplify the numerator.
Step 4.4.4.1
Add and .
Step 4.4.4.2
Add and .
Step 4.4.4.3
Add and .
Step 4.4.5
Divide by .
Step 4.5
Simplify the expression to solve for the portion of the .
Step 4.5.1
Simplify the numerator.
Step 4.5.1.1
Apply the distributive property.
Step 4.5.1.2
Multiply by .
Step 4.5.1.3
Rewrite as .
Step 4.5.1.4
Expand using the FOIL Method.
Step 4.5.1.4.1
Apply the distributive property.
Step 4.5.1.4.2
Apply the distributive property.
Step 4.5.1.4.3
Apply the distributive property.
Step 4.5.1.5
Simplify and combine like terms.
Step 4.5.1.5.1
Simplify each term.
Step 4.5.1.5.1.1
Multiply by .
Step 4.5.1.5.1.2
Rewrite as .
Step 4.5.1.5.1.3
Move to the left of .
Step 4.5.1.5.1.4
Rewrite as .
Step 4.5.1.5.1.5
Multiply by .
Step 4.5.1.5.2
Subtract from .
Step 4.5.1.6
Multiply .
Step 4.5.1.6.1
Multiply by .
Step 4.5.1.6.2
Multiply by .
Step 4.5.1.7
Add and .
Step 4.5.1.8
Reorder terms.
Step 4.5.1.9
Factor using the perfect square rule.
Step 4.5.1.9.1
Rewrite as .
Step 4.5.1.9.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 4.5.1.9.3
Rewrite the polynomial.
Step 4.5.1.9.4
Factor using the perfect square trinomial rule , where and .
Step 4.5.1.10
Pull terms out from under the radical, assuming positive real numbers.
Step 4.5.2
Multiply by .
Step 4.5.3
Change the to .
Step 4.5.4
Simplify the numerator.
Step 4.5.4.1
Apply the distributive property.
Step 4.5.4.2
Multiply by .
Step 4.5.4.3
Subtract from .
Step 4.5.4.4
Add and .
Step 4.5.4.5
Subtract from .
Step 4.5.5
Cancel the common factor of and .
Step 4.5.5.1
Factor out of .
Step 4.5.5.2
Cancel the common factors.
Step 4.5.5.2.1
Factor out of .
Step 4.5.5.2.2
Cancel the common factor.
Step 4.5.5.2.3
Rewrite the expression.
Step 4.5.5.2.4
Divide by .
Step 4.6
The final answer is the combination of both solutions.
Step 5
Set the denominator in equal to to find where the expression is undefined.
Step 6
Step 6.1
Set the numerator equal to zero.
Step 6.2
Solve the equation for .
Step 6.2.1
Use the quadratic formula to find the solutions.
Step 6.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 6.2.3
Simplify.
Step 6.2.3.1
Simplify the numerator.
Step 6.2.3.1.1
Apply the distributive property.
Step 6.2.3.1.2
Multiply by .
Step 6.2.3.1.3
Multiply .
Step 6.2.3.1.3.1
Multiply by .
Step 6.2.3.1.3.2
Multiply by .
Step 6.2.3.1.4
Rewrite as .
Step 6.2.3.1.5
Expand using the FOIL Method.
Step 6.2.3.1.5.1
Apply the distributive property.
Step 6.2.3.1.5.2
Apply the distributive property.
Step 6.2.3.1.5.3
Apply the distributive property.
Step 6.2.3.1.6
Simplify and combine like terms.
Step 6.2.3.1.6.1
Simplify each term.
Step 6.2.3.1.6.1.1
Multiply by .
Step 6.2.3.1.6.1.2
Multiply .
Step 6.2.3.1.6.1.2.1
Multiply by .
Step 6.2.3.1.6.1.2.2
Multiply by .
Step 6.2.3.1.6.1.3
Multiply .
Step 6.2.3.1.6.1.3.1
Multiply by .
Step 6.2.3.1.6.1.3.2
Multiply by .
Step 6.2.3.1.6.1.4
Rewrite using the commutative property of multiplication.
Step 6.2.3.1.6.1.5
Multiply by by adding the exponents.
Step 6.2.3.1.6.1.5.1
Move .
Step 6.2.3.1.6.1.5.2
Multiply by .
Step 6.2.3.1.6.1.6
Multiply by .
Step 6.2.3.1.6.1.7
Multiply by .
Step 6.2.3.1.6.2
Add and .
Step 6.2.3.1.7
Multiply by .
Step 6.2.3.1.8
Subtract from .
Step 6.2.3.1.9
Reorder terms.
Step 6.2.3.1.10
Factor using the perfect square rule.
Step 6.2.3.1.10.1
Rewrite as .
Step 6.2.3.1.10.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 6.2.3.1.10.3
Rewrite the polynomial.
Step 6.2.3.1.10.4
Factor using the perfect square trinomial rule , where and .
Step 6.2.3.1.11
Pull terms out from under the radical, assuming positive real numbers.
Step 6.2.3.2
Multiply by .
Step 6.2.4
Simplify the expression to solve for the portion of the .
Step 6.2.4.1
Simplify the numerator.
Step 6.2.4.1.1
Apply the distributive property.
Step 6.2.4.1.2
Multiply by .
Step 6.2.4.1.3
Multiply .
Step 6.2.4.1.3.1
Multiply by .
Step 6.2.4.1.3.2
Multiply by .
Step 6.2.4.1.4
Rewrite as .
Step 6.2.4.1.5
Expand using the FOIL Method.
Step 6.2.4.1.5.1
Apply the distributive property.
Step 6.2.4.1.5.2
Apply the distributive property.
Step 6.2.4.1.5.3
Apply the distributive property.
Step 6.2.4.1.6
Simplify and combine like terms.
Step 6.2.4.1.6.1
Simplify each term.
Step 6.2.4.1.6.1.1
Multiply by .
Step 6.2.4.1.6.1.2
Multiply .
Step 6.2.4.1.6.1.2.1
Multiply by .
Step 6.2.4.1.6.1.2.2
Multiply by .
Step 6.2.4.1.6.1.3
Multiply .
Step 6.2.4.1.6.1.3.1
Multiply by .
Step 6.2.4.1.6.1.3.2
Multiply by .
Step 6.2.4.1.6.1.4
Rewrite using the commutative property of multiplication.
Step 6.2.4.1.6.1.5
Multiply by by adding the exponents.
Step 6.2.4.1.6.1.5.1
Move .
Step 6.2.4.1.6.1.5.2
Multiply by .
Step 6.2.4.1.6.1.6
Multiply by .
Step 6.2.4.1.6.1.7
Multiply by .
Step 6.2.4.1.6.2
Add and .
Step 6.2.4.1.7
Multiply by .
Step 6.2.4.1.8
Subtract from .
Step 6.2.4.1.9
Reorder terms.
Step 6.2.4.1.10
Factor using the perfect square rule.
Step 6.2.4.1.10.1
Rewrite as .
Step 6.2.4.1.10.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 6.2.4.1.10.3
Rewrite the polynomial.
Step 6.2.4.1.10.4
Factor using the perfect square trinomial rule , where and .
Step 6.2.4.1.11
Pull terms out from under the radical, assuming positive real numbers.
Step 6.2.4.2
Multiply by .
Step 6.2.4.3
Change the to .
Step 6.2.4.4
Simplify the numerator.
Step 6.2.4.4.1
Subtract from .
Step 6.2.4.4.2
Add and .
Step 6.2.4.4.3
Add and .
Step 6.2.4.5
Cancel the common factor of .
Step 6.2.4.5.1
Cancel the common factor.
Step 6.2.4.5.2
Divide by .
Step 6.2.5
Simplify the expression to solve for the portion of the .
Step 6.2.5.1
Simplify the numerator.
Step 6.2.5.1.1
Apply the distributive property.
Step 6.2.5.1.2
Multiply by .
Step 6.2.5.1.3
Multiply .
Step 6.2.5.1.3.1
Multiply by .
Step 6.2.5.1.3.2
Multiply by .
Step 6.2.5.1.4
Rewrite as .
Step 6.2.5.1.5
Expand using the FOIL Method.
Step 6.2.5.1.5.1
Apply the distributive property.
Step 6.2.5.1.5.2
Apply the distributive property.
Step 6.2.5.1.5.3
Apply the distributive property.
Step 6.2.5.1.6
Simplify and combine like terms.
Step 6.2.5.1.6.1
Simplify each term.
Step 6.2.5.1.6.1.1
Multiply by .
Step 6.2.5.1.6.1.2
Multiply .
Step 6.2.5.1.6.1.2.1
Multiply by .
Step 6.2.5.1.6.1.2.2
Multiply by .
Step 6.2.5.1.6.1.3
Multiply .
Step 6.2.5.1.6.1.3.1
Multiply by .
Step 6.2.5.1.6.1.3.2
Multiply by .
Step 6.2.5.1.6.1.4
Rewrite using the commutative property of multiplication.
Step 6.2.5.1.6.1.5
Multiply by by adding the exponents.
Step 6.2.5.1.6.1.5.1
Move .
Step 6.2.5.1.6.1.5.2
Multiply by .
Step 6.2.5.1.6.1.6
Multiply by .
Step 6.2.5.1.6.1.7
Multiply by .
Step 6.2.5.1.6.2
Add and .
Step 6.2.5.1.7
Multiply by .
Step 6.2.5.1.8
Subtract from .
Step 6.2.5.1.9
Reorder terms.
Step 6.2.5.1.10
Factor using the perfect square rule.
Step 6.2.5.1.10.1
Rewrite as .
Step 6.2.5.1.10.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 6.2.5.1.10.3
Rewrite the polynomial.
Step 6.2.5.1.10.4
Factor using the perfect square trinomial rule , where and .
Step 6.2.5.1.11
Pull terms out from under the radical, assuming positive real numbers.
Step 6.2.5.2
Multiply by .
Step 6.2.5.3
Change the to .
Step 6.2.5.4
Simplify the numerator.
Step 6.2.5.4.1
Apply the distributive property.
Step 6.2.5.4.2
Multiply by .
Step 6.2.5.4.3
Add and .
Step 6.2.5.4.4
Subtract from .
Step 6.2.5.4.5
Add and .
Step 6.2.5.5
Divide by .
Step 6.2.6
The final answer is the combination of both solutions.
Step 7
The domain is all values of that make the expression defined.
Set-Builder Notation:
, for any integer