Enter a problem...
Precalculus Examples
S(t)=t2+3t-6S(t)=t2+3t−6 , t=0t=0 , t=2t=2
Step 1
Step 1.1
The average rate of change of a function can be found by calculating the change in yy values of the two points divided by the change in tt values of the two points.
f(2)-f(0)(2)-(0)f(2)−f(0)(2)−(0)
Step 1.2
Substitute the equation y=t2+3t-6y=t2+3t−6 for f(2)f(2) and f(0)f(0), replacing tt in the function with the corresponding tt value.
((2)2+3(2)-6)-((0)2+3(0)-6)(2)-(0)((2)2+3(2)−6)−((0)2+3(0)−6)(2)−(0)
((2)2+3(2)-6)-((0)2+3(0)-6)(2)-(0)((2)2+3(2)−6)−((0)2+3(0)−6)(2)−(0)
Step 2
Step 2.1
Simplify the numerator.
Step 2.1.1
Raise 22 to the power of 22.
4+3(2)-6-(02+3(0)-6)2-(0)4+3(2)−6−(02+3(0)−6)2−(0)
Step 2.1.2
Multiply 33 by 22.
4+6-6-(02+3(0)-6)2-(0)4+6−6−(02+3(0)−6)2−(0)
Step 2.1.3
Simplify each term.
Step 2.1.3.1
Raising 00 to any positive power yields 00.
4+6-6-(0+3(0)-6)2-(0)4+6−6−(0+3(0)−6)2−(0)
Step 2.1.3.2
Multiply 33 by 00.
4+6-6-(0+0-6)2-(0)4+6−6−(0+0−6)2−(0)
4+6-6-(0+0-6)2-(0)4+6−6−(0+0−6)2−(0)
Step 2.1.4
Add 00 and 00.
4+6-6-(0-6)2-(0)4+6−6−(0−6)2−(0)
Step 2.1.5
Subtract 66 from 00.
4+6-6--62-(0)4+6−6−−62−(0)
Step 2.1.6
Multiply -1−1 by -6.
4+6-6+62-(0)
Step 2.1.7
Add 4 and 6.
10-6+62-(0)
Step 2.1.8
Subtract 6 from 10.
4+62-(0)
Step 2.1.9
Add 4 and 6.
102-(0)
102-(0)
Step 2.2
Simplify the denominator.
Step 2.2.1
Multiply -1 by 0.
102+0
Step 2.2.2
Add 2 and 0.
102
102
Step 2.3
Divide 10 by 2.
5
5