Enter a problem...
Precalculus Examples
Step 1
Set the denominator in equal to to find where the expression is undefined.
Step 2
Step 2.1
Factor out of .
Step 2.1.1
Factor out of .
Step 2.1.2
Factor out of .
Step 2.1.3
Factor out of .
Step 2.2
Rewrite as .
Step 2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4
Set equal to .
Step 2.5
Set equal to and solve for .
Step 2.5.1
Set equal to .
Step 2.5.2
Solve for .
Step 2.5.2.1
Add to both sides of the equation.
Step 2.5.2.2
Divide each term in by and simplify.
Step 2.5.2.2.1
Divide each term in by .
Step 2.5.2.2.2
Simplify the left side.
Step 2.5.2.2.2.1
Cancel the common factor of .
Step 2.5.2.2.2.1.1
Cancel the common factor.
Step 2.5.2.2.2.1.2
Divide by .
Step 2.6
The final solution is all the values that make true.
Step 3
Set the denominator in equal to to find where the expression is undefined.
Step 4
Step 4.1
Add to both sides of the equation.
Step 4.2
Divide each term in by and simplify.
Step 4.2.1
Divide each term in by .
Step 4.2.2
Simplify the left side.
Step 4.2.2.1
Cancel the common factor of .
Step 4.2.2.1.1
Cancel the common factor.
Step 4.2.2.1.2
Divide by .
Step 4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 4.4
Simplify .
Step 4.4.1
Rewrite as .
Step 4.4.2
Rewrite as .
Step 4.4.3
Pull terms out from under the radical, assuming positive real numbers.
Step 4.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 4.5.1
First, use the positive value of the to find the first solution.
Step 4.5.2
Next, use the negative value of the to find the second solution.
Step 4.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 5
Set the denominator in equal to to find where the expression is undefined.
Step 6
Step 6.1
Factor out of .
Step 6.1.1
Factor out of .
Step 6.1.2
Factor out of .
Step 6.1.3
Factor out of .
Step 6.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 6.3
Set equal to .
Step 6.4
Set equal to and solve for .
Step 6.4.1
Set equal to .
Step 6.4.2
Solve for .
Step 6.4.2.1
Subtract from both sides of the equation.
Step 6.4.2.2
Divide each term in by and simplify.
Step 6.4.2.2.1
Divide each term in by .
Step 6.4.2.2.2
Simplify the left side.
Step 6.4.2.2.2.1
Cancel the common factor of .
Step 6.4.2.2.2.1.1
Cancel the common factor.
Step 6.4.2.2.2.1.2
Divide by .
Step 6.4.2.2.3
Simplify the right side.
Step 6.4.2.2.3.1
Move the negative in front of the fraction.
Step 6.5
The final solution is all the values that make true.
Step 7
The domain is all values of that make the expression defined.
Interval Notation:
Set-Builder Notation: