Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Factor the fraction.
Step 1.1.1
Subtract from .
Step 1.1.2
Factor.
Step 1.1.2.1
Factor using the AC method.
Step 1.1.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 1.1.2.1.2
Write the factored form using these integers.
Step 1.1.2.2
Remove unnecessary parentheses.
Step 1.2
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.3
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.4
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.5
Multiply each fraction in the equation by the denominator of the original expression. In this case, the denominator is .
Step 1.6
Cancel the common factor of .
Step 1.6.1
Cancel the common factor.
Step 1.6.2
Rewrite the expression.
Step 1.7
Cancel the common factor of .
Step 1.7.1
Cancel the common factor.
Step 1.7.2
Rewrite the expression.
Step 1.8
Cancel the common factor of .
Step 1.8.1
Cancel the common factor.
Step 1.8.2
Divide by .
Step 1.9
Simplify each term.
Step 1.9.1
Cancel the common factor of .
Step 1.9.1.1
Cancel the common factor.
Step 1.9.1.2
Divide by .
Step 1.9.2
Apply the distributive property.
Step 1.9.3
Move to the left of .
Step 1.9.4
Expand using the FOIL Method.
Step 1.9.4.1
Apply the distributive property.
Step 1.9.4.2
Apply the distributive property.
Step 1.9.4.3
Apply the distributive property.
Step 1.9.5
Simplify and combine like terms.
Step 1.9.5.1
Simplify each term.
Step 1.9.5.1.1
Multiply by by adding the exponents.
Step 1.9.5.1.1.1
Move .
Step 1.9.5.1.1.2
Multiply by .
Step 1.9.5.1.2
Move to the left of .
Step 1.9.5.1.3
Multiply by .
Step 1.9.5.2
Subtract from .
Step 1.9.6
Cancel the common factor of .
Step 1.9.6.1
Cancel the common factor.
Step 1.9.6.2
Divide by .
Step 1.9.7
Apply the distributive property.
Step 1.9.8
Multiply by .
Step 1.9.9
Expand using the FOIL Method.
Step 1.9.9.1
Apply the distributive property.
Step 1.9.9.2
Apply the distributive property.
Step 1.9.9.3
Apply the distributive property.
Step 1.9.10
Simplify and combine like terms.
Step 1.9.10.1
Simplify each term.
Step 1.9.10.1.1
Multiply by by adding the exponents.
Step 1.9.10.1.1.1
Move .
Step 1.9.10.1.1.2
Multiply by .
Step 1.9.10.1.2
Move to the left of .
Step 1.9.10.1.3
Move to the left of .
Step 1.9.10.2
Add and .
Step 1.9.11
Cancel the common factor of .
Step 1.9.11.1
Cancel the common factor.
Step 1.9.11.2
Divide by .
Step 1.9.12
Apply the distributive property.
Step 1.9.13
Multiply by .
Step 1.9.14
Expand using the FOIL Method.
Step 1.9.14.1
Apply the distributive property.
Step 1.9.14.2
Apply the distributive property.
Step 1.9.14.3
Apply the distributive property.
Step 1.9.15
Simplify and combine like terms.
Step 1.9.15.1
Simplify each term.
Step 1.9.15.1.1
Multiply by by adding the exponents.
Step 1.9.15.1.1.1
Move .
Step 1.9.15.1.1.2
Multiply by .
Step 1.9.15.1.2
Move to the left of .
Step 1.9.15.1.3
Move to the left of .
Step 1.9.15.2
Add and .
Step 1.10
Simplify the expression.
Step 1.10.1
Move .
Step 1.10.2
Reorder and .
Step 1.10.3
Move .
Step 1.10.4
Move .
Step 1.10.5
Move .
Step 1.10.6
Move .
Step 1.10.7
Move .
Step 2
Step 2.1
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.2
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.3
Create an equation for the partial fraction variables by equating the coefficients of the terms not containing . For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.4
Set up the system of equations to find the coefficients of the partial fractions.
Step 3
Step 3.1
Solve for in .
Step 3.1.1
Rewrite the equation as .
Step 3.1.2
Move all terms not containing to the right side of the equation.
Step 3.1.2.1
Subtract from both sides of the equation.
Step 3.1.2.2
Subtract from both sides of the equation.
Step 3.2
Replace all occurrences of with in each equation.
Step 3.2.1
Replace all occurrences of in with .
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Simplify each term.
Step 3.2.2.1.1.1
Apply the distributive property.
Step 3.2.2.1.1.2
Multiply by .
Step 3.2.2.1.1.3
Multiply by .
Step 3.2.2.1.1.4
Rewrite as .
Step 3.2.2.1.2
Simplify by adding terms.
Step 3.2.2.1.2.1
Subtract from .
Step 3.2.2.1.2.2
Subtract from .
Step 3.2.3
Replace all occurrences of in with .
Step 3.2.4
Simplify the right side.
Step 3.2.4.1
Simplify .
Step 3.2.4.1.1
Simplify each term.
Step 3.2.4.1.1.1
Apply the distributive property.
Step 3.2.4.1.1.2
Multiply by .
Step 3.2.4.1.1.3
Multiply by .
Step 3.2.4.1.2
Simplify by adding terms.
Step 3.2.4.1.2.1
Subtract from .
Step 3.2.4.1.2.2
Subtract from .
Step 3.3
Solve for in .
Step 3.3.1
Rewrite the equation as .
Step 3.3.2
Add to both sides of the equation.
Step 3.3.3
Divide each term in by and simplify.
Step 3.3.3.1
Divide each term in by .
Step 3.3.3.2
Simplify the left side.
Step 3.3.3.2.1
Cancel the common factor of .
Step 3.3.3.2.1.1
Cancel the common factor.
Step 3.3.3.2.1.2
Divide by .
Step 3.3.3.3
Simplify the right side.
Step 3.3.3.3.1
Simplify each term.
Step 3.3.3.3.1.1
Cancel the common factor of and .
Step 3.3.3.3.1.1.1
Factor out of .
Step 3.3.3.3.1.1.2
Cancel the common factors.
Step 3.3.3.3.1.1.2.1
Factor out of .
Step 3.3.3.3.1.1.2.2
Cancel the common factor.
Step 3.3.3.3.1.1.2.3
Rewrite the expression.
Step 3.3.3.3.1.2
Move the negative in front of the fraction.
Step 3.3.3.3.1.3
Move the negative in front of the fraction.
Step 3.4
Replace all occurrences of with in each equation.
Step 3.4.1
Replace all occurrences of in with .
Step 3.4.2
Simplify the right side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Simplify each term.
Step 3.4.2.1.1.1
Apply the distributive property.
Step 3.4.2.1.1.2
Cancel the common factor of .
Step 3.4.2.1.1.2.1
Move the leading negative in into the numerator.
Step 3.4.2.1.1.2.2
Cancel the common factor.
Step 3.4.2.1.1.2.3
Rewrite the expression.
Step 3.4.2.1.1.3
Cancel the common factor of .
Step 3.4.2.1.1.3.1
Move the leading negative in into the numerator.
Step 3.4.2.1.1.3.2
Factor out of .
Step 3.4.2.1.1.3.3
Cancel the common factor.
Step 3.4.2.1.1.3.4
Rewrite the expression.
Step 3.4.2.1.1.4
Move the negative in front of the fraction.
Step 3.4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.4.2.1.3
Simplify terms.
Step 3.4.2.1.3.1
Combine and .
Step 3.4.2.1.3.2
Combine the numerators over the common denominator.
Step 3.4.2.1.4
Simplify each term.
Step 3.4.2.1.4.1
Simplify the numerator.
Step 3.4.2.1.4.1.1
Factor out of .
Step 3.4.2.1.4.1.1.1
Factor out of .
Step 3.4.2.1.4.1.1.2
Factor out of .
Step 3.4.2.1.4.1.1.3
Factor out of .
Step 3.4.2.1.4.1.2
Add and .
Step 3.4.2.1.4.1.3
Multiply by .
Step 3.4.2.1.4.2
Move the negative in front of the fraction.
Step 3.4.3
Replace all occurrences of in with .
Step 3.4.4
Simplify the right side.
Step 3.4.4.1
Simplify .
Step 3.4.4.1.1
Simplify each term.
Step 3.4.4.1.1.1
Apply the distributive property.
Step 3.4.4.1.1.2
Multiply .
Step 3.4.4.1.1.2.1
Multiply by .
Step 3.4.4.1.1.2.2
Multiply by .
Step 3.4.4.1.1.3
Multiply .
Step 3.4.4.1.1.3.1
Multiply by .
Step 3.4.4.1.1.3.2
Multiply by .
Step 3.4.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.4.4.1.3
Simplify terms.
Step 3.4.4.1.3.1
Combine and .
Step 3.4.4.1.3.2
Combine the numerators over the common denominator.
Step 3.4.4.1.4
Simplify each term.
Step 3.4.4.1.4.1
Simplify the numerator.
Step 3.4.4.1.4.1.1
Factor out of .
Step 3.4.4.1.4.1.1.1
Factor out of .
Step 3.4.4.1.4.1.1.2
Factor out of .
Step 3.4.4.1.4.1.1.3
Factor out of .
Step 3.4.4.1.4.1.2
Multiply by .
Step 3.4.4.1.4.1.3
Subtract from .
Step 3.4.4.1.4.2
Multiply by .
Step 3.5
Solve for in .
Step 3.5.1
Rewrite the equation as .
Step 3.5.2
Add to both sides of the equation.
Step 3.5.3
Multiply both sides of the equation by .
Step 3.5.4
Simplify both sides of the equation.
Step 3.5.4.1
Simplify the left side.
Step 3.5.4.1.1
Simplify .
Step 3.5.4.1.1.1
Cancel the common factor of .
Step 3.5.4.1.1.1.1
Move the leading negative in into the numerator.
Step 3.5.4.1.1.1.2
Move the leading negative in into the numerator.
Step 3.5.4.1.1.1.3
Factor out of .
Step 3.5.4.1.1.1.4
Cancel the common factor.
Step 3.5.4.1.1.1.5
Rewrite the expression.
Step 3.5.4.1.1.2
Cancel the common factor of .
Step 3.5.4.1.1.2.1
Factor out of .
Step 3.5.4.1.1.2.2
Cancel the common factor.
Step 3.5.4.1.1.2.3
Rewrite the expression.
Step 3.5.4.1.1.3
Multiply.
Step 3.5.4.1.1.3.1
Multiply by .
Step 3.5.4.1.1.3.2
Multiply by .
Step 3.5.4.2
Simplify the right side.
Step 3.5.4.2.1
Simplify .
Step 3.5.4.2.1.1
Multiply .
Step 3.5.4.2.1.1.1
Multiply by .
Step 3.5.4.2.1.1.2
Combine and .
Step 3.5.4.2.1.1.3
Multiply by .
Step 3.5.4.2.1.2
Move the negative in front of the fraction.
Step 3.6
Replace all occurrences of with in each equation.
Step 3.6.1
Replace all occurrences of in with .
Step 3.6.2
Simplify the right side.
Step 3.6.2.1
Simplify .
Step 3.6.2.1.1
Simplify each term.
Step 3.6.2.1.1.1
Multiply the numerator by the reciprocal of the denominator.
Step 3.6.2.1.1.2
Cancel the common factor of .
Step 3.6.2.1.1.2.1
Move the leading negative in into the numerator.
Step 3.6.2.1.1.2.2
Factor out of .
Step 3.6.2.1.1.2.3
Factor out of .
Step 3.6.2.1.1.2.4
Cancel the common factor.
Step 3.6.2.1.1.2.5
Rewrite the expression.
Step 3.6.2.1.1.3
Multiply by .
Step 3.6.2.1.1.4
Multiply by .
Step 3.6.2.1.1.5
Move the negative in front of the fraction.
Step 3.6.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.6.2.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.6.2.1.3.1
Multiply by .
Step 3.6.2.1.3.2
Multiply by .
Step 3.6.2.1.4
Combine the numerators over the common denominator.
Step 3.6.2.1.5
Simplify the numerator.
Step 3.6.2.1.5.1
Multiply by .
Step 3.6.2.1.5.2
Subtract from .
Step 3.6.2.1.6
Cancel the common factor of and .
Step 3.6.2.1.6.1
Factor out of .
Step 3.6.2.1.6.2
Cancel the common factors.
Step 3.6.2.1.6.2.1
Factor out of .
Step 3.6.2.1.6.2.2
Cancel the common factor.
Step 3.6.2.1.6.2.3
Rewrite the expression.
Step 3.6.3
Replace all occurrences of in with .
Step 3.6.4
Simplify the right side.
Step 3.6.4.1
Simplify .
Step 3.6.4.1.1
Simplify each term.
Step 3.6.4.1.1.1
Simplify the numerator.
Step 3.6.4.1.1.1.1
Multiply by .
Step 3.6.4.1.1.1.2
Combine and .
Step 3.6.4.1.1.2
Multiply by .
Step 3.6.4.1.1.3
Divide by .
Step 3.6.4.1.1.4
Cancel the common factor of and .
Step 3.6.4.1.1.4.1
Factor out of .
Step 3.6.4.1.1.4.2
Cancel the common factors.
Step 3.6.4.1.1.4.2.1
Factor out of .
Step 3.6.4.1.1.4.2.2
Cancel the common factor.
Step 3.6.4.1.1.4.2.3
Rewrite the expression.
Step 3.6.4.1.1.5
Move the negative in front of the fraction.
Step 3.6.4.1.1.6
Multiply .
Step 3.6.4.1.1.6.1
Multiply by .
Step 3.6.4.1.1.6.2
Multiply by .
Step 3.6.4.1.2
Simplify terms.
Step 3.6.4.1.2.1
Combine the numerators over the common denominator.
Step 3.6.4.1.2.2
Add and .
Step 3.6.4.1.2.3
Cancel the common factor of and .
Step 3.6.4.1.2.3.1
Factor out of .
Step 3.6.4.1.2.3.2
Cancel the common factors.
Step 3.6.4.1.2.3.2.1
Factor out of .
Step 3.6.4.1.2.3.2.2
Cancel the common factor.
Step 3.6.4.1.2.3.2.3
Rewrite the expression.
Step 3.7
List all of the solutions.
Step 4
Replace each of the partial fraction coefficients in with the values found for , , and .