Enter a problem...
Precalculus Examples
Step 1
Step 1.1
Isolate to the left side of the equation.
Step 1.1.1
To write as a fraction with a common denominator, multiply by .
Step 1.1.2
Combine and .
Step 1.1.3
Combine the numerators over the common denominator.
Step 1.1.4
Reorder terms.
Step 1.2
Complete the square for .
Step 1.2.1
Simplify the expression.
Step 1.2.1.1
Simplify each term.
Step 1.2.1.1.1
Rewrite as .
Step 1.2.1.1.2
Expand using the FOIL Method.
Step 1.2.1.1.2.1
Apply the distributive property.
Step 1.2.1.1.2.2
Apply the distributive property.
Step 1.2.1.1.2.3
Apply the distributive property.
Step 1.2.1.1.3
Simplify and combine like terms.
Step 1.2.1.1.3.1
Simplify each term.
Step 1.2.1.1.3.1.1
Multiply by .
Step 1.2.1.1.3.1.2
Multiply by .
Step 1.2.1.1.3.1.3
Multiply by .
Step 1.2.1.1.3.1.4
Multiply by .
Step 1.2.1.1.3.2
Add and .
Step 1.2.1.1.4
Apply the distributive property.
Step 1.2.1.1.5
Simplify.
Step 1.2.1.1.5.1
Move to the left of .
Step 1.2.1.1.5.2
Multiply by .
Step 1.2.1.1.5.3
Multiply by .
Step 1.2.1.2
Subtract from .
Step 1.2.1.3
Apply the distributive property.
Step 1.2.1.4
Simplify.
Step 1.2.1.4.1
Cancel the common factor of .
Step 1.2.1.4.1.1
Factor out of .
Step 1.2.1.4.1.2
Cancel the common factor.
Step 1.2.1.4.1.3
Rewrite the expression.
Step 1.2.1.4.2
Cancel the common factor of .
Step 1.2.1.4.2.1
Factor out of .
Step 1.2.1.4.2.2
Cancel the common factor.
Step 1.2.1.4.2.3
Rewrite the expression.
Step 1.2.1.4.3
Combine and .
Step 1.2.1.5
Move the negative in front of the fraction.
Step 1.2.2
Use the form , to find the values of , , and .
Step 1.2.3
Consider the vertex form of a parabola.
Step 1.2.4
Find the value of using the formula .
Step 1.2.4.1
Substitute the values of and into the formula .
Step 1.2.4.2
Cancel the common factor of .
Step 1.2.4.2.1
Cancel the common factor.
Step 1.2.4.2.2
Rewrite the expression.
Step 1.2.5
Find the value of using the formula .
Step 1.2.5.1
Substitute the values of , and into the formula .
Step 1.2.5.2
Simplify the right side.
Step 1.2.5.2.1
Simplify each term.
Step 1.2.5.2.1.1
Raise to the power of .
Step 1.2.5.2.1.2
Multiply by .
Step 1.2.5.2.1.3
Cancel the common factor of .
Step 1.2.5.2.1.3.1
Cancel the common factor.
Step 1.2.5.2.1.3.2
Rewrite the expression.
Step 1.2.5.2.1.4
Multiply by .
Step 1.2.5.2.2
To write as a fraction with a common denominator, multiply by .
Step 1.2.5.2.3
Combine and .
Step 1.2.5.2.4
Combine the numerators over the common denominator.
Step 1.2.5.2.5
Simplify the numerator.
Step 1.2.5.2.5.1
Multiply by .
Step 1.2.5.2.5.2
Subtract from .
Step 1.2.5.2.6
Move the negative in front of the fraction.
Step 1.2.6
Substitute the values of , , and into the vertex form .
Step 1.3
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Find the vertex .
Step 4