Enter a problem...
Precalculus Examples
j(x)=-x2+3x+10j(x)=−x2+3x+10 , j(3x-2)j(3x−2)
Step 1
Replace the variable xx with 3x-23x−2 in the expression.
j(3x-2)=-(3x-2)2+3(3x-2)+10j(3x−2)=−(3x−2)2+3(3x−2)+10
Step 2
Step 2.1
Remove parentheses.
-(3x-2)2+3(3x-2)+10−(3x−2)2+3(3x−2)+10
Step 2.2
Simplify each term.
Step 2.2.1
Rewrite (3x-2)2(3x−2)2 as (3x-2)(3x-2)(3x−2)(3x−2).
-((3x-2)(3x-2))+3(3x-2)+10−((3x−2)(3x−2))+3(3x−2)+10
Step 2.2.2
Expand (3x-2)(3x-2)(3x−2)(3x−2) using the FOIL Method.
Step 2.2.2.1
Apply the distributive property.
-(3x(3x-2)-2(3x-2))+3(3x-2)+10−(3x(3x−2)−2(3x−2))+3(3x−2)+10
Step 2.2.2.2
Apply the distributive property.
-(3x(3x)+3x⋅-2-2(3x-2))+3(3x-2)+10−(3x(3x)+3x⋅−2−2(3x−2))+3(3x−2)+10
Step 2.2.2.3
Apply the distributive property.
-(3x(3x)+3x⋅-2-2(3x)-2⋅-2)+3(3x-2)+10−(3x(3x)+3x⋅−2−2(3x)−2⋅−2)+3(3x−2)+10
-(3x(3x)+3x⋅-2-2(3x)-2⋅-2)+3(3x-2)+10−(3x(3x)+3x⋅−2−2(3x)−2⋅−2)+3(3x−2)+10
Step 2.2.3
Simplify and combine like terms.
Step 2.2.3.1
Simplify each term.
Step 2.2.3.1.1
Rewrite using the commutative property of multiplication.
-(3⋅3x⋅x+3x⋅-2-2(3x)-2⋅-2)+3(3x-2)+10−(3⋅3x⋅x+3x⋅−2−2(3x)−2⋅−2)+3(3x−2)+10
Step 2.2.3.1.2
Multiply xx by xx by adding the exponents.
Step 2.2.3.1.2.1
Move xx.
-(3⋅3(x⋅x)+3x⋅-2-2(3x)-2⋅-2)+3(3x-2)+10−(3⋅3(x⋅x)+3x⋅−2−2(3x)−2⋅−2)+3(3x−2)+10
Step 2.2.3.1.2.2
Multiply xx by xx.
-(3⋅3x2+3x⋅-2-2(3x)-2⋅-2)+3(3x-2)+10−(3⋅3x2+3x⋅−2−2(3x)−2⋅−2)+3(3x−2)+10
-(3⋅3x2+3x⋅-2-2(3x)-2⋅-2)+3(3x-2)+10−(3⋅3x2+3x⋅−2−2(3x)−2⋅−2)+3(3x−2)+10
Step 2.2.3.1.3
Multiply 33 by 33.
-(9x2+3x⋅-2-2(3x)-2⋅-2)+3(3x-2)+10−(9x2+3x⋅−2−2(3x)−2⋅−2)+3(3x−2)+10
Step 2.2.3.1.4
Multiply -2−2 by 33.
-(9x2-6x-2(3x)-2⋅-2)+3(3x-2)+10−(9x2−6x−2(3x)−2⋅−2)+3(3x−2)+10
Step 2.2.3.1.5
Multiply 33 by -2−2.
-(9x2-6x-6x-2⋅-2)+3(3x-2)+10−(9x2−6x−6x−2⋅−2)+3(3x−2)+10
Step 2.2.3.1.6
Multiply -2−2 by -2−2.
-(9x2-6x-6x+4)+3(3x-2)+10−(9x2−6x−6x+4)+3(3x−2)+10
-(9x2-6x-6x+4)+3(3x-2)+10−(9x2−6x−6x+4)+3(3x−2)+10
Step 2.2.3.2
Subtract 6x6x from -6x−6x.
-(9x2-12x+4)+3(3x-2)+10−(9x2−12x+4)+3(3x−2)+10
-(9x2-12x+4)+3(3x-2)+10−(9x2−12x+4)+3(3x−2)+10
Step 2.2.4
Apply the distributive property.
-(9x2)-(-12x)-1⋅4+3(3x-2)+10
Step 2.2.5
Simplify.
Step 2.2.5.1
Multiply 9 by -1.
-9x2-(-12x)-1⋅4+3(3x-2)+10
Step 2.2.5.2
Multiply -12 by -1.
-9x2+12x-1⋅4+3(3x-2)+10
Step 2.2.5.3
Multiply -1 by 4.
-9x2+12x-4+3(3x-2)+10
-9x2+12x-4+3(3x-2)+10
Step 2.2.6
Apply the distributive property.
-9x2+12x-4+3(3x)+3⋅-2+10
Step 2.2.7
Multiply 3 by 3.
-9x2+12x-4+9x+3⋅-2+10
Step 2.2.8
Multiply 3 by -2.
-9x2+12x-4+9x-6+10
-9x2+12x-4+9x-6+10
Step 2.3
Simplify by adding terms.
Step 2.3.1
Add 12x and 9x.
-9x2+21x-4-6+10
Step 2.3.2
Subtract 6 from -4.
-9x2+21x-10+10
Step 2.3.3
Combine the opposite terms in -9x2+21x-10+10.
Step 2.3.3.1
Add -10 and 10.
-9x2+21x+0
Step 2.3.3.2
Add -9x2+21x and 0.
-9x2+21x
-9x2+21x
-9x2+21x
-9x2+21x