Precalculus Examples

Evaluate the Function j(x)=-x^2+3x+10 , j(3x-2)
j(x)=-x2+3x+10j(x)=x2+3x+10 , j(3x-2)j(3x2)
Step 1
Replace the variable xx with 3x-23x2 in the expression.
j(3x-2)=-(3x-2)2+3(3x-2)+10j(3x2)=(3x2)2+3(3x2)+10
Step 2
Simplify -(3x-2)2+3(3x-2)+10(3x2)2+3(3x2)+10.
Tap for more steps...
Step 2.1
Remove parentheses.
-(3x-2)2+3(3x-2)+10(3x2)2+3(3x2)+10
Step 2.2
Simplify each term.
Tap for more steps...
Step 2.2.1
Rewrite (3x-2)2(3x2)2 as (3x-2)(3x-2)(3x2)(3x2).
-((3x-2)(3x-2))+3(3x-2)+10((3x2)(3x2))+3(3x2)+10
Step 2.2.2
Expand (3x-2)(3x-2)(3x2)(3x2) using the FOIL Method.
Tap for more steps...
Step 2.2.2.1
Apply the distributive property.
-(3x(3x-2)-2(3x-2))+3(3x-2)+10(3x(3x2)2(3x2))+3(3x2)+10
Step 2.2.2.2
Apply the distributive property.
-(3x(3x)+3x-2-2(3x-2))+3(3x-2)+10(3x(3x)+3x22(3x2))+3(3x2)+10
Step 2.2.2.3
Apply the distributive property.
-(3x(3x)+3x-2-2(3x)-2-2)+3(3x-2)+10(3x(3x)+3x22(3x)22)+3(3x2)+10
-(3x(3x)+3x-2-2(3x)-2-2)+3(3x-2)+10(3x(3x)+3x22(3x)22)+3(3x2)+10
Step 2.2.3
Simplify and combine like terms.
Tap for more steps...
Step 2.2.3.1
Simplify each term.
Tap for more steps...
Step 2.2.3.1.1
Rewrite using the commutative property of multiplication.
-(33xx+3x-2-2(3x)-2-2)+3(3x-2)+10(33xx+3x22(3x)22)+3(3x2)+10
Step 2.2.3.1.2
Multiply xx by xx by adding the exponents.
Tap for more steps...
Step 2.2.3.1.2.1
Move xx.
-(33(xx)+3x-2-2(3x)-2-2)+3(3x-2)+10(33(xx)+3x22(3x)22)+3(3x2)+10
Step 2.2.3.1.2.2
Multiply xx by xx.
-(33x2+3x-2-2(3x)-2-2)+3(3x-2)+10(33x2+3x22(3x)22)+3(3x2)+10
-(33x2+3x-2-2(3x)-2-2)+3(3x-2)+10(33x2+3x22(3x)22)+3(3x2)+10
Step 2.2.3.1.3
Multiply 33 by 33.
-(9x2+3x-2-2(3x)-2-2)+3(3x-2)+10(9x2+3x22(3x)22)+3(3x2)+10
Step 2.2.3.1.4
Multiply -22 by 33.
-(9x2-6x-2(3x)-2-2)+3(3x-2)+10(9x26x2(3x)22)+3(3x2)+10
Step 2.2.3.1.5
Multiply 33 by -22.
-(9x2-6x-6x-2-2)+3(3x-2)+10(9x26x6x22)+3(3x2)+10
Step 2.2.3.1.6
Multiply -22 by -22.
-(9x2-6x-6x+4)+3(3x-2)+10(9x26x6x+4)+3(3x2)+10
-(9x2-6x-6x+4)+3(3x-2)+10(9x26x6x+4)+3(3x2)+10
Step 2.2.3.2
Subtract 6x6x from -6x6x.
-(9x2-12x+4)+3(3x-2)+10(9x212x+4)+3(3x2)+10
-(9x2-12x+4)+3(3x-2)+10(9x212x+4)+3(3x2)+10
Step 2.2.4
Apply the distributive property.
-(9x2)-(-12x)-14+3(3x-2)+10
Step 2.2.5
Simplify.
Tap for more steps...
Step 2.2.5.1
Multiply 9 by -1.
-9x2-(-12x)-14+3(3x-2)+10
Step 2.2.5.2
Multiply -12 by -1.
-9x2+12x-14+3(3x-2)+10
Step 2.2.5.3
Multiply -1 by 4.
-9x2+12x-4+3(3x-2)+10
-9x2+12x-4+3(3x-2)+10
Step 2.2.6
Apply the distributive property.
-9x2+12x-4+3(3x)+3-2+10
Step 2.2.7
Multiply 3 by 3.
-9x2+12x-4+9x+3-2+10
Step 2.2.8
Multiply 3 by -2.
-9x2+12x-4+9x-6+10
-9x2+12x-4+9x-6+10
Step 2.3
Simplify by adding terms.
Tap for more steps...
Step 2.3.1
Add 12x and 9x.
-9x2+21x-4-6+10
Step 2.3.2
Subtract 6 from -4.
-9x2+21x-10+10
Step 2.3.3
Combine the opposite terms in -9x2+21x-10+10.
Tap for more steps...
Step 2.3.3.1
Add -10 and 10.
-9x2+21x+0
Step 2.3.3.2
Add -9x2+21x and 0.
-9x2+21x
-9x2+21x
-9x2+21x
-9x2+21x
 [x2  12  π  xdx ]