Enter a problem...
Precalculus Examples
Step 1
Find where the expression is undefined.
Step 2
Since as from the left and as from the right, then is a vertical asymptote.
Step 3
Consider the rational function where is the degree of the numerator and is the degree of the denominator.
1. If , then the x-axis, , is the horizontal asymptote.
2. If , then the horizontal asymptote is the line .
3. If , then there is no horizontal asymptote (there is an oblique asymptote).
Step 4
Find and .
Step 5
Since , there is no horizontal asymptote.
No Horizontal Asymptotes
Step 6
Step 6.1
Simplify the expression.
Step 6.1.1
Simplify the numerator.
Step 6.1.1.1
Factor out of .
Step 6.1.1.1.1
Factor out of .
Step 6.1.1.1.2
Factor out of .
Step 6.1.1.1.3
Factor out of .
Step 6.1.1.2
Rewrite as .
Step 6.1.1.3
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 6.1.2
Simplify terms.
Step 6.1.2.1
Factor out of .
Step 6.1.2.1.1
Factor out of .
Step 6.1.2.1.2
Factor out of .
Step 6.1.2.1.3
Factor out of .
Step 6.1.2.2
Cancel the common factor of and .
Step 6.1.2.2.1
Factor out of .
Step 6.1.2.2.2
Cancel the common factors.
Step 6.1.2.2.2.1
Cancel the common factor.
Step 6.1.2.2.2.2
Rewrite the expression.
Step 6.2
Expand .
Step 6.2.1
Apply the distributive property.
Step 6.2.2
Apply the distributive property.
Step 6.2.3
Apply the distributive property.
Step 6.2.4
Apply the distributive property.
Step 6.2.5
Move .
Step 6.2.6
Reorder and .
Step 6.2.7
Reorder and .
Step 6.2.8
Reorder and .
Step 6.2.9
Move .
Step 6.2.10
Multiply by .
Step 6.2.11
Multiply by .
Step 6.2.12
Raise to the power of .
Step 6.2.13
Raise to the power of .
Step 6.2.14
Use the power rule to combine exponents.
Step 6.2.15
Add and .
Step 6.2.16
Raise to the power of .
Step 6.2.17
Use the power rule to combine exponents.
Step 6.2.18
Add and .
Step 6.2.19
Raise to the power of .
Step 6.2.20
Raise to the power of .
Step 6.2.21
Use the power rule to combine exponents.
Step 6.2.22
Add and .
Step 6.2.23
Raise to the power of .
Step 6.2.24
Raise to the power of .
Step 6.2.25
Use the power rule to combine exponents.
Step 6.2.26
Add and .
Step 6.2.27
Multiply by .
Step 6.2.28
Add and .
Step 6.2.29
Subtract from .
Step 6.3
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
- | + | - | + |
Step 6.4
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | - | + |
Step 6.5
Multiply the new quotient term by the divisor.
- | + | - | + | ||||||||
+ | - |
Step 6.6
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | - | + | ||||||||
- | + |
Step 6.7
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | - | + | ||||||||
- | + | ||||||||||
+ |
Step 6.8
Pull the next terms from the original dividend down into the current dividend.
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - |
Step 6.9
Divide the highest order term in the dividend by the highest order term in divisor .
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - |
Step 6.10
Multiply the new quotient term by the divisor.
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Step 6.11
The expression needs to be subtracted from the dividend, so change all the signs in
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + |
Step 6.12
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
+ |
Step 6.13
Pull the next terms from the original dividend down into the current dividend.
+ | |||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
+ | + |
Step 6.14
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | ||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
+ | + |
Step 6.15
Multiply the new quotient term by the divisor.
+ | + | ||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - |
Step 6.16
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | ||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + |
Step 6.17
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | ||||||||||
- | + | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ |
Step 6.18
The final answer is the quotient plus the remainder over the divisor.
Step 6.19
Split the solution into the polynomial portion and the remainder.
Step 6.20
The oblique asymptote is the polynomial portion of the long division result.
Step 7
This is the set of all asymptotes.
Vertical Asymptotes:
No Horizontal Asymptotes
Oblique Asymptotes:
Step 8