Precalculus Examples

Find the Domain f(x,y)=( square root of x^2+y^2-9)/x
Step 1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 2
Solve for .
Tap for more steps...
Step 2.1
Move all terms not containing to the right side of the inequality.
Tap for more steps...
Step 2.1.1
Subtract from both sides of the inequality.
Step 2.1.2
Add to both sides of the inequality.
Step 2.2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Step 2.3
Simplify the equation.
Tap for more steps...
Step 2.3.1
Simplify the left side.
Tap for more steps...
Step 2.3.1.1
Pull terms out from under the radical.
Step 2.3.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.1
Simplify .
Tap for more steps...
Step 2.3.2.1.1
Simplify the expression.
Tap for more steps...
Step 2.3.2.1.1.1
Rewrite as .
Step 2.3.2.1.1.2
Reorder and .
Step 2.3.2.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.4
Write as a piecewise.
Tap for more steps...
Step 2.4.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
Step 2.4.2
In the piece where is non-negative, remove the absolute value.
Step 2.4.3
Find the domain of and find the intersection with .
Tap for more steps...
Step 2.4.3.1
Find the domain of .
Tap for more steps...
Step 2.4.3.1.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 2.4.3.1.2
Solve for .
Tap for more steps...
Step 2.4.3.1.2.1
Simplify .
Tap for more steps...
Step 2.4.3.1.2.1.1
Expand using the FOIL Method.
Tap for more steps...
Step 2.4.3.1.2.1.1.1
Apply the distributive property.
Step 2.4.3.1.2.1.1.2
Apply the distributive property.
Step 2.4.3.1.2.1.1.3
Apply the distributive property.
Step 2.4.3.1.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 2.4.3.1.2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.4.3.1.2.1.2.1.1
Multiply by .
Step 2.4.3.1.2.1.2.1.2
Multiply by .
Step 2.4.3.1.2.1.2.1.3
Move to the left of .
Step 2.4.3.1.2.1.2.1.4
Rewrite using the commutative property of multiplication.
Step 2.4.3.1.2.1.2.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 2.4.3.1.2.1.2.1.5.1
Move .
Step 2.4.3.1.2.1.2.1.5.2
Multiply by .
Step 2.4.3.1.2.1.2.2
Add and .
Step 2.4.3.1.2.1.2.3
Add and .
Step 2.4.3.1.2.2
Subtract from both sides of the inequality.
Step 2.4.3.1.2.3
Divide each term in by and simplify.
Tap for more steps...
Step 2.4.3.1.2.3.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.4.3.1.2.3.2
Simplify the left side.
Tap for more steps...
Step 2.4.3.1.2.3.2.1
Dividing two negative values results in a positive value.
Step 2.4.3.1.2.3.2.2
Divide by .
Step 2.4.3.1.2.3.3
Simplify the right side.
Tap for more steps...
Step 2.4.3.1.2.3.3.1
Divide by .
Step 2.4.3.1.2.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Step 2.4.3.1.2.5
Simplify the equation.
Tap for more steps...
Step 2.4.3.1.2.5.1
Simplify the left side.
Tap for more steps...
Step 2.4.3.1.2.5.1.1
Pull terms out from under the radical.
Step 2.4.3.1.2.5.2
Simplify the right side.
Tap for more steps...
Step 2.4.3.1.2.5.2.1
Simplify .
Tap for more steps...
Step 2.4.3.1.2.5.2.1.1
Rewrite as .
Step 2.4.3.1.2.5.2.1.2
Pull terms out from under the radical.
Step 2.4.3.1.2.5.2.1.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 2.4.3.1.2.6
Write as a piecewise.
Tap for more steps...
Step 2.4.3.1.2.6.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
Step 2.4.3.1.2.6.2
In the piece where is non-negative, remove the absolute value.
Step 2.4.3.1.2.6.3
To find the interval for the second piece, find where the inside of the absolute value is negative.
Step 2.4.3.1.2.6.4
In the piece where is negative, remove the absolute value and multiply by .
Step 2.4.3.1.2.6.5
Write as a piecewise.
Step 2.4.3.1.2.7
Find the intersection of and .
Step 2.4.3.1.2.8
Solve when .
Tap for more steps...
Step 2.4.3.1.2.8.1
Divide each term in by and simplify.
Tap for more steps...
Step 2.4.3.1.2.8.1.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.4.3.1.2.8.1.2
Simplify the left side.
Tap for more steps...
Step 2.4.3.1.2.8.1.2.1
Dividing two negative values results in a positive value.
Step 2.4.3.1.2.8.1.2.2
Divide by .
Step 2.4.3.1.2.8.1.3
Simplify the right side.
Tap for more steps...
Step 2.4.3.1.2.8.1.3.1
Divide by .
Step 2.4.3.1.2.8.2
Find the intersection of and .
Step 2.4.3.1.2.9
Find the union of the solutions.
Step 2.4.3.1.3
The domain is all values of that make the expression defined.
Step 2.4.3.2
Find the intersection of and .
Step 2.4.4
To find the interval for the second piece, find where the inside of the absolute value is negative.
Step 2.4.5
In the piece where is negative, remove the absolute value and multiply by .
Step 2.4.6
Find the domain of and find the intersection with .
Tap for more steps...
Step 2.4.6.1
Find the domain of .
Tap for more steps...
Step 2.4.6.1.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 2.4.6.1.2
Solve for .
Tap for more steps...
Step 2.4.6.1.2.1
Simplify .
Tap for more steps...
Step 2.4.6.1.2.1.1
Expand using the FOIL Method.
Tap for more steps...
Step 2.4.6.1.2.1.1.1
Apply the distributive property.
Step 2.4.6.1.2.1.1.2
Apply the distributive property.
Step 2.4.6.1.2.1.1.3
Apply the distributive property.
Step 2.4.6.1.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 2.4.6.1.2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.4.6.1.2.1.2.1.1
Multiply by .
Step 2.4.6.1.2.1.2.1.2
Multiply by .
Step 2.4.6.1.2.1.2.1.3
Move to the left of .
Step 2.4.6.1.2.1.2.1.4
Rewrite using the commutative property of multiplication.
Step 2.4.6.1.2.1.2.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 2.4.6.1.2.1.2.1.5.1
Move .
Step 2.4.6.1.2.1.2.1.5.2
Multiply by .
Step 2.4.6.1.2.1.2.2
Add and .
Step 2.4.6.1.2.1.2.3
Add and .
Step 2.4.6.1.2.2
Subtract from both sides of the inequality.
Step 2.4.6.1.2.3
Divide each term in by and simplify.
Tap for more steps...
Step 2.4.6.1.2.3.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.4.6.1.2.3.2
Simplify the left side.
Tap for more steps...
Step 2.4.6.1.2.3.2.1
Dividing two negative values results in a positive value.
Step 2.4.6.1.2.3.2.2
Divide by .
Step 2.4.6.1.2.3.3
Simplify the right side.
Tap for more steps...
Step 2.4.6.1.2.3.3.1
Divide by .
Step 2.4.6.1.2.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Step 2.4.6.1.2.5
Simplify the equation.
Tap for more steps...
Step 2.4.6.1.2.5.1
Simplify the left side.
Tap for more steps...
Step 2.4.6.1.2.5.1.1
Pull terms out from under the radical.
Step 2.4.6.1.2.5.2
Simplify the right side.
Tap for more steps...
Step 2.4.6.1.2.5.2.1
Simplify .
Tap for more steps...
Step 2.4.6.1.2.5.2.1.1
Rewrite as .
Step 2.4.6.1.2.5.2.1.2
Pull terms out from under the radical.
Step 2.4.6.1.2.5.2.1.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 2.4.6.1.2.6
Write as a piecewise.
Tap for more steps...
Step 2.4.6.1.2.6.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
Step 2.4.6.1.2.6.2
In the piece where is non-negative, remove the absolute value.
Step 2.4.6.1.2.6.3
To find the interval for the second piece, find where the inside of the absolute value is negative.
Step 2.4.6.1.2.6.4
In the piece where is negative, remove the absolute value and multiply by .
Step 2.4.6.1.2.6.5
Write as a piecewise.
Step 2.4.6.1.2.7
Find the intersection of and .
Step 2.4.6.1.2.8
Solve when .
Tap for more steps...
Step 2.4.6.1.2.8.1
Divide each term in by and simplify.
Tap for more steps...
Step 2.4.6.1.2.8.1.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.4.6.1.2.8.1.2
Simplify the left side.
Tap for more steps...
Step 2.4.6.1.2.8.1.2.1
Dividing two negative values results in a positive value.
Step 2.4.6.1.2.8.1.2.2
Divide by .
Step 2.4.6.1.2.8.1.3
Simplify the right side.
Tap for more steps...
Step 2.4.6.1.2.8.1.3.1
Divide by .
Step 2.4.6.1.2.8.2
Find the intersection of and .
Step 2.4.6.1.2.9
Find the union of the solutions.
Step 2.4.6.1.3
The domain is all values of that make the expression defined.
Step 2.4.6.2
Find the intersection of and .
Step 2.4.7
Write as a piecewise.
Step 2.5
Solve when .
Tap for more steps...
Step 2.5.1
Solve for .
Tap for more steps...
Step 2.5.1.1
Rewrite so is on the left side of the inequality.
Step 2.5.1.2
To remove the radical on the left side of the inequality, square both sides of the inequality.
Step 2.5.1.3
Simplify each side of the inequality.
Tap for more steps...
Step 2.5.1.3.1
Use to rewrite as .
Step 2.5.1.3.2
Simplify the left side.
Tap for more steps...
Step 2.5.1.3.2.1
Simplify .
Tap for more steps...
Step 2.5.1.3.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 2.5.1.3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 2.5.1.3.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.5.1.3.2.1.1.2.1
Cancel the common factor.
Step 2.5.1.3.2.1.1.2.2
Rewrite the expression.
Step 2.5.1.3.2.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 2.5.1.3.2.1.2.1
Apply the distributive property.
Step 2.5.1.3.2.1.2.2
Apply the distributive property.
Step 2.5.1.3.2.1.2.3
Apply the distributive property.
Step 2.5.1.3.2.1.3
Simplify and combine like terms.
Tap for more steps...
Step 2.5.1.3.2.1.3.1
Simplify each term.
Tap for more steps...
Step 2.5.1.3.2.1.3.1.1
Multiply by .
Step 2.5.1.3.2.1.3.1.2
Multiply by .
Step 2.5.1.3.2.1.3.1.3
Move to the left of .
Step 2.5.1.3.2.1.3.1.4
Rewrite using the commutative property of multiplication.
Step 2.5.1.3.2.1.3.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 2.5.1.3.2.1.3.1.5.1
Move .
Step 2.5.1.3.2.1.3.1.5.2
Multiply by .
Step 2.5.1.3.2.1.3.2
Add and .
Step 2.5.1.3.2.1.3.3
Add and .
Step 2.5.1.3.2.1.4
Simplify.
Step 2.5.1.4
Solve for .
Tap for more steps...
Step 2.5.1.4.1
Subtract from both sides of the inequality.
Step 2.5.1.4.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.5.1.4.2.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.5.1.4.2.2
Simplify the left side.
Tap for more steps...
Step 2.5.1.4.2.2.1
Dividing two negative values results in a positive value.
Step 2.5.1.4.2.2.2
Divide by .
Step 2.5.1.4.2.3
Simplify the right side.
Tap for more steps...
Step 2.5.1.4.2.3.1
Simplify each term.
Tap for more steps...
Step 2.5.1.4.2.3.1.1
Move the negative one from the denominator of .
Step 2.5.1.4.2.3.1.2
Rewrite as .
Step 2.5.1.4.2.3.1.3
Divide by .
Step 2.5.1.4.3
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Step 2.5.1.4.4
Simplify the equation.
Tap for more steps...
Step 2.5.1.4.4.1
Simplify the left side.
Tap for more steps...
Step 2.5.1.4.4.1.1
Pull terms out from under the radical.
Step 2.5.1.4.4.2
Simplify the right side.
Tap for more steps...
Step 2.5.1.4.4.2.1
Simplify .
Tap for more steps...
Step 2.5.1.4.4.2.1.1
Simplify the expression.
Tap for more steps...
Step 2.5.1.4.4.2.1.1.1
Rewrite as .
Step 2.5.1.4.4.2.1.1.2
Reorder and .
Step 2.5.1.4.4.2.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.5.1.4.5
Write as a piecewise.
Tap for more steps...
Step 2.5.1.4.5.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
Step 2.5.1.4.5.2
In the piece where is non-negative, remove the absolute value.
Step 2.5.1.4.5.3
Find the domain of and find the intersection with .
Tap for more steps...
Step 2.5.1.4.5.3.1
Find the domain of .
Tap for more steps...
Step 2.5.1.4.5.3.1.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 2.5.1.4.5.3.1.2
Solve for .
Tap for more steps...
Step 2.5.1.4.5.3.1.2.1
Simplify .
Tap for more steps...
Step 2.5.1.4.5.3.1.2.1.1
Expand using the FOIL Method.
Tap for more steps...
Step 2.5.1.4.5.3.1.2.1.1.1
Apply the distributive property.
Step 2.5.1.4.5.3.1.2.1.1.2
Apply the distributive property.
Step 2.5.1.4.5.3.1.2.1.1.3
Apply the distributive property.
Step 2.5.1.4.5.3.1.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 2.5.1.4.5.3.1.2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.5.1.4.5.3.1.2.1.2.1.1
Multiply by .
Step 2.5.1.4.5.3.1.2.1.2.1.2
Multiply by .
Step 2.5.1.4.5.3.1.2.1.2.1.3
Move to the left of .
Step 2.5.1.4.5.3.1.2.1.2.1.4
Rewrite using the commutative property of multiplication.
Step 2.5.1.4.5.3.1.2.1.2.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 2.5.1.4.5.3.1.2.1.2.1.5.1
Move .
Step 2.5.1.4.5.3.1.2.1.2.1.5.2
Multiply by .
Step 2.5.1.4.5.3.1.2.1.2.2
Add and .
Step 2.5.1.4.5.3.1.2.1.2.3
Add and .
Step 2.5.1.4.5.3.1.2.2
Subtract from both sides of the inequality.
Step 2.5.1.4.5.3.1.2.3
Divide each term in by and simplify.
Tap for more steps...
Step 2.5.1.4.5.3.1.2.3.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.5.1.4.5.3.1.2.3.2
Simplify the left side.
Tap for more steps...
Step 2.5.1.4.5.3.1.2.3.2.1
Dividing two negative values results in a positive value.
Step 2.5.1.4.5.3.1.2.3.2.2
Divide by .
Step 2.5.1.4.5.3.1.2.3.3
Simplify the right side.
Tap for more steps...
Step 2.5.1.4.5.3.1.2.3.3.1
Divide by .
Step 2.5.1.4.5.3.1.2.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Step 2.5.1.4.5.3.1.2.5
Simplify the equation.
Tap for more steps...
Step 2.5.1.4.5.3.1.2.5.1
Simplify the left side.
Tap for more steps...
Step 2.5.1.4.5.3.1.2.5.1.1
Pull terms out from under the radical.
Step 2.5.1.4.5.3.1.2.5.2
Simplify the right side.
Tap for more steps...
Step 2.5.1.4.5.3.1.2.5.2.1
Simplify .
Tap for more steps...
Step 2.5.1.4.5.3.1.2.5.2.1.1
Rewrite as .
Step 2.5.1.4.5.3.1.2.5.2.1.2
Pull terms out from under the radical.
Step 2.5.1.4.5.3.1.2.5.2.1.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 2.5.1.4.5.3.1.2.6
Write as a piecewise.
Tap for more steps...
Step 2.5.1.4.5.3.1.2.6.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
Step 2.5.1.4.5.3.1.2.6.2
In the piece where is non-negative, remove the absolute value.
Step 2.5.1.4.5.3.1.2.6.3
To find the interval for the second piece, find where the inside of the absolute value is negative.
Step 2.5.1.4.5.3.1.2.6.4
In the piece where is negative, remove the absolute value and multiply by .
Step 2.5.1.4.5.3.1.2.6.5
Write as a piecewise.
Step 2.5.1.4.5.3.1.2.7
Find the intersection of and .
Step 2.5.1.4.5.3.1.2.8
Solve when .
Tap for more steps...
Step 2.5.1.4.5.3.1.2.8.1
Divide each term in by and simplify.
Tap for more steps...
Step 2.5.1.4.5.3.1.2.8.1.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.5.1.4.5.3.1.2.8.1.2
Simplify the left side.
Tap for more steps...
Step 2.5.1.4.5.3.1.2.8.1.2.1
Dividing two negative values results in a positive value.
Step 2.5.1.4.5.3.1.2.8.1.2.2
Divide by .
Step 2.5.1.4.5.3.1.2.8.1.3
Simplify the right side.
Tap for more steps...
Step 2.5.1.4.5.3.1.2.8.1.3.1
Divide by .
Step 2.5.1.4.5.3.1.2.8.2
Find the intersection of and .
Step 2.5.1.4.5.3.1.2.9
Find the union of the solutions.
Step 2.5.1.4.5.3.1.3
The domain is all values of that make the expression defined.
Step 2.5.1.4.5.3.2
Find the intersection of and .
Step 2.5.1.4.5.4
To find the interval for the second piece, find where the inside of the absolute value is negative.
Step 2.5.1.4.5.5
In the piece where is negative, remove the absolute value and multiply by .
Step 2.5.1.4.5.6
Find the domain of and find the intersection with .
Tap for more steps...
Step 2.5.1.4.5.6.1
Find the domain of .
Tap for more steps...
Step 2.5.1.4.5.6.1.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 2.5.1.4.5.6.1.2
Solve for .
Tap for more steps...
Step 2.5.1.4.5.6.1.2.1
Simplify .
Tap for more steps...
Step 2.5.1.4.5.6.1.2.1.1
Expand using the FOIL Method.
Tap for more steps...
Step 2.5.1.4.5.6.1.2.1.1.1
Apply the distributive property.
Step 2.5.1.4.5.6.1.2.1.1.2
Apply the distributive property.
Step 2.5.1.4.5.6.1.2.1.1.3
Apply the distributive property.
Step 2.5.1.4.5.6.1.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 2.5.1.4.5.6.1.2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.5.1.4.5.6.1.2.1.2.1.1
Multiply by .
Step 2.5.1.4.5.6.1.2.1.2.1.2
Multiply by .
Step 2.5.1.4.5.6.1.2.1.2.1.3
Move to the left of .
Step 2.5.1.4.5.6.1.2.1.2.1.4
Rewrite using the commutative property of multiplication.
Step 2.5.1.4.5.6.1.2.1.2.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 2.5.1.4.5.6.1.2.1.2.1.5.1
Move .
Step 2.5.1.4.5.6.1.2.1.2.1.5.2
Multiply by .
Step 2.5.1.4.5.6.1.2.1.2.2
Add and .
Step 2.5.1.4.5.6.1.2.1.2.3
Add and .
Step 2.5.1.4.5.6.1.2.2
Subtract from both sides of the inequality.
Step 2.5.1.4.5.6.1.2.3
Divide each term in by and simplify.
Tap for more steps...
Step 2.5.1.4.5.6.1.2.3.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.5.1.4.5.6.1.2.3.2
Simplify the left side.
Tap for more steps...
Step 2.5.1.4.5.6.1.2.3.2.1
Dividing two negative values results in a positive value.
Step 2.5.1.4.5.6.1.2.3.2.2
Divide by .
Step 2.5.1.4.5.6.1.2.3.3
Simplify the right side.
Tap for more steps...
Step 2.5.1.4.5.6.1.2.3.3.1
Divide by .
Step 2.5.1.4.5.6.1.2.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Step 2.5.1.4.5.6.1.2.5
Simplify the equation.
Tap for more steps...
Step 2.5.1.4.5.6.1.2.5.1
Simplify the left side.
Tap for more steps...
Step 2.5.1.4.5.6.1.2.5.1.1
Pull terms out from under the radical.
Step 2.5.1.4.5.6.1.2.5.2
Simplify the right side.
Tap for more steps...
Step 2.5.1.4.5.6.1.2.5.2.1
Simplify .
Tap for more steps...
Step 2.5.1.4.5.6.1.2.5.2.1.1
Rewrite as .
Step 2.5.1.4.5.6.1.2.5.2.1.2
Pull terms out from under the radical.
Step 2.5.1.4.5.6.1.2.5.2.1.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 2.5.1.4.5.6.1.2.6
Write as a piecewise.
Tap for more steps...
Step 2.5.1.4.5.6.1.2.6.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
Step 2.5.1.4.5.6.1.2.6.2
In the piece where is non-negative, remove the absolute value.
Step 2.5.1.4.5.6.1.2.6.3
To find the interval for the second piece, find where the inside of the absolute value is negative.
Step 2.5.1.4.5.6.1.2.6.4
In the piece where is negative, remove the absolute value and multiply by .
Step 2.5.1.4.5.6.1.2.6.5
Write as a piecewise.
Step 2.5.1.4.5.6.1.2.7
Find the intersection of and .
Step 2.5.1.4.5.6.1.2.8
Solve when .
Tap for more steps...
Step 2.5.1.4.5.6.1.2.8.1
Divide each term in by and simplify.
Tap for more steps...
Step 2.5.1.4.5.6.1.2.8.1.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.5.1.4.5.6.1.2.8.1.2
Simplify the left side.
Tap for more steps...
Step 2.5.1.4.5.6.1.2.8.1.2.1
Dividing two negative values results in a positive value.
Step 2.5.1.4.5.6.1.2.8.1.2.2
Divide by .
Step 2.5.1.4.5.6.1.2.8.1.3
Simplify the right side.
Tap for more steps...
Step 2.5.1.4.5.6.1.2.8.1.3.1
Divide by .
Step 2.5.1.4.5.6.1.2.8.2
Find the intersection of and .
Step 2.5.1.4.5.6.1.2.9
Find the union of the solutions.
Step 2.5.1.4.5.6.1.3
The domain is all values of that make the expression defined.
Step 2.5.1.4.5.6.2
Find the intersection of and .
Step 2.5.1.4.5.7
Write as a piecewise.
Step 2.5.1.4.6
Find the intersection of and .
No solution
Step 2.5.1.4.7
Solve when .
Tap for more steps...
Step 2.5.1.4.7.1
Divide each term in by and simplify.
Tap for more steps...
Step 2.5.1.4.7.1.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.5.1.4.7.1.2
Simplify the left side.
Tap for more steps...
Step 2.5.1.4.7.1.2.1
Dividing two negative values results in a positive value.
Step 2.5.1.4.7.1.2.2
Divide by .
Step 2.5.1.4.7.1.3
Simplify the right side.
Tap for more steps...
Step 2.5.1.4.7.1.3.1
Move the negative one from the denominator of .
Step 2.5.1.4.7.1.3.2
Rewrite as .
Step 2.5.1.4.7.2
Find the intersection of and .
Step 2.5.1.4.8
Find the union of the solutions.
Step 2.5.2
Find the intersection of and .
Step 2.6
Solve when .
Tap for more steps...
Step 2.6.1
Solve for .
Tap for more steps...
Step 2.6.1.1
Rewrite so is on the left side of the inequality.
Step 2.6.1.2
To remove the radical on the left side of the inequality, square both sides of the inequality.
Step 2.6.1.3
Simplify each side of the inequality.
Tap for more steps...
Step 2.6.1.3.1
Use to rewrite as .
Step 2.6.1.3.2
Simplify the left side.
Tap for more steps...
Step 2.6.1.3.2.1
Simplify .
Tap for more steps...
Step 2.6.1.3.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 2.6.1.3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 2.6.1.3.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.6.1.3.2.1.1.2.1
Cancel the common factor.
Step 2.6.1.3.2.1.1.2.2
Rewrite the expression.
Step 2.6.1.3.2.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 2.6.1.3.2.1.2.1
Apply the distributive property.
Step 2.6.1.3.2.1.2.2
Apply the distributive property.
Step 2.6.1.3.2.1.2.3
Apply the distributive property.
Step 2.6.1.3.2.1.3
Simplify and combine like terms.
Tap for more steps...
Step 2.6.1.3.2.1.3.1
Simplify each term.
Tap for more steps...
Step 2.6.1.3.2.1.3.1.1
Multiply by .
Step 2.6.1.3.2.1.3.1.2
Multiply by .
Step 2.6.1.3.2.1.3.1.3
Move to the left of .
Step 2.6.1.3.2.1.3.1.4
Rewrite using the commutative property of multiplication.
Step 2.6.1.3.2.1.3.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 2.6.1.3.2.1.3.1.5.1
Move .
Step 2.6.1.3.2.1.3.1.5.2
Multiply by .
Step 2.6.1.3.2.1.3.2
Add and .
Step 2.6.1.3.2.1.3.3
Add and .
Step 2.6.1.3.2.1.4
Simplify.
Step 2.6.1.3.3
Simplify the right side.
Tap for more steps...
Step 2.6.1.3.3.1
Simplify .
Tap for more steps...
Step 2.6.1.3.3.1.1
Apply the product rule to .
Step 2.6.1.3.3.1.2
Raise to the power of .
Step 2.6.1.3.3.1.3
Multiply by .
Step 2.6.1.4
Solve for .
Tap for more steps...
Step 2.6.1.4.1
Subtract from both sides of the inequality.
Step 2.6.1.4.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.6.1.4.2.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.6.1.4.2.2
Simplify the left side.
Tap for more steps...
Step 2.6.1.4.2.2.1
Dividing two negative values results in a positive value.
Step 2.6.1.4.2.2.2
Divide by .
Step 2.6.1.4.2.3
Simplify the right side.
Tap for more steps...
Step 2.6.1.4.2.3.1
Simplify each term.
Tap for more steps...
Step 2.6.1.4.2.3.1.1
Move the negative one from the denominator of .
Step 2.6.1.4.2.3.1.2
Rewrite as .
Step 2.6.1.4.2.3.1.3
Divide by .
Step 2.6.1.4.3
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Step 2.6.1.4.4
Simplify the equation.
Tap for more steps...
Step 2.6.1.4.4.1
Simplify the left side.
Tap for more steps...
Step 2.6.1.4.4.1.1
Pull terms out from under the radical.
Step 2.6.1.4.4.2
Simplify the right side.
Tap for more steps...
Step 2.6.1.4.4.2.1
Simplify .
Tap for more steps...
Step 2.6.1.4.4.2.1.1
Simplify the expression.
Tap for more steps...
Step 2.6.1.4.4.2.1.1.1
Rewrite as .
Step 2.6.1.4.4.2.1.1.2
Reorder and .
Step 2.6.1.4.4.2.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.6.1.4.5
Write as a piecewise.
Tap for more steps...
Step 2.6.1.4.5.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
Step 2.6.1.4.5.2
In the piece where is non-negative, remove the absolute value.
Step 2.6.1.4.5.3
Find the domain of and find the intersection with .
Tap for more steps...
Step 2.6.1.4.5.3.1
Find the domain of .
Tap for more steps...
Step 2.6.1.4.5.3.1.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 2.6.1.4.5.3.1.2
Solve for .
Tap for more steps...
Step 2.6.1.4.5.3.1.2.1
Simplify .
Tap for more steps...
Step 2.6.1.4.5.3.1.2.1.1
Expand using the FOIL Method.
Tap for more steps...
Step 2.6.1.4.5.3.1.2.1.1.1
Apply the distributive property.
Step 2.6.1.4.5.3.1.2.1.1.2
Apply the distributive property.
Step 2.6.1.4.5.3.1.2.1.1.3
Apply the distributive property.
Step 2.6.1.4.5.3.1.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 2.6.1.4.5.3.1.2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.6.1.4.5.3.1.2.1.2.1.1
Multiply by .
Step 2.6.1.4.5.3.1.2.1.2.1.2
Multiply by .
Step 2.6.1.4.5.3.1.2.1.2.1.3
Move to the left of .
Step 2.6.1.4.5.3.1.2.1.2.1.4
Rewrite using the commutative property of multiplication.
Step 2.6.1.4.5.3.1.2.1.2.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 2.6.1.4.5.3.1.2.1.2.1.5.1
Move .
Step 2.6.1.4.5.3.1.2.1.2.1.5.2
Multiply by .
Step 2.6.1.4.5.3.1.2.1.2.2
Add and .
Step 2.6.1.4.5.3.1.2.1.2.3
Add and .
Step 2.6.1.4.5.3.1.2.2
Subtract from both sides of the inequality.
Step 2.6.1.4.5.3.1.2.3
Divide each term in by and simplify.
Tap for more steps...
Step 2.6.1.4.5.3.1.2.3.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.6.1.4.5.3.1.2.3.2
Simplify the left side.
Tap for more steps...
Step 2.6.1.4.5.3.1.2.3.2.1
Dividing two negative values results in a positive value.
Step 2.6.1.4.5.3.1.2.3.2.2
Divide by .
Step 2.6.1.4.5.3.1.2.3.3
Simplify the right side.
Tap for more steps...
Step 2.6.1.4.5.3.1.2.3.3.1
Divide by .
Step 2.6.1.4.5.3.1.2.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Step 2.6.1.4.5.3.1.2.5
Simplify the equation.
Tap for more steps...
Step 2.6.1.4.5.3.1.2.5.1
Simplify the left side.
Tap for more steps...
Step 2.6.1.4.5.3.1.2.5.1.1
Pull terms out from under the radical.
Step 2.6.1.4.5.3.1.2.5.2
Simplify the right side.
Tap for more steps...
Step 2.6.1.4.5.3.1.2.5.2.1
Simplify .
Tap for more steps...
Step 2.6.1.4.5.3.1.2.5.2.1.1
Rewrite as .
Step 2.6.1.4.5.3.1.2.5.2.1.2
Pull terms out from under the radical.
Step 2.6.1.4.5.3.1.2.5.2.1.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 2.6.1.4.5.3.1.2.6
Write as a piecewise.
Tap for more steps...
Step 2.6.1.4.5.3.1.2.6.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
Step 2.6.1.4.5.3.1.2.6.2
In the piece where is non-negative, remove the absolute value.
Step 2.6.1.4.5.3.1.2.6.3
To find the interval for the second piece, find where the inside of the absolute value is negative.
Step 2.6.1.4.5.3.1.2.6.4
In the piece where is negative, remove the absolute value and multiply by .
Step 2.6.1.4.5.3.1.2.6.5
Write as a piecewise.
Step 2.6.1.4.5.3.1.2.7
Find the intersection of and .
Step 2.6.1.4.5.3.1.2.8
Solve when .
Tap for more steps...
Step 2.6.1.4.5.3.1.2.8.1
Divide each term in by and simplify.
Tap for more steps...
Step 2.6.1.4.5.3.1.2.8.1.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.6.1.4.5.3.1.2.8.1.2
Simplify the left side.
Tap for more steps...
Step 2.6.1.4.5.3.1.2.8.1.2.1
Dividing two negative values results in a positive value.
Step 2.6.1.4.5.3.1.2.8.1.2.2
Divide by .
Step 2.6.1.4.5.3.1.2.8.1.3
Simplify the right side.
Tap for more steps...
Step 2.6.1.4.5.3.1.2.8.1.3.1
Divide by .
Step 2.6.1.4.5.3.1.2.8.2
Find the intersection of and .
Step 2.6.1.4.5.3.1.2.9
Find the union of the solutions.
Step 2.6.1.4.5.3.1.3
The domain is all values of that make the expression defined.
Step 2.6.1.4.5.3.2
Find the intersection of and .
Step 2.6.1.4.5.4
To find the interval for the second piece, find where the inside of the absolute value is negative.
Step 2.6.1.4.5.5
In the piece where is negative, remove the absolute value and multiply by .
Step 2.6.1.4.5.6
Find the domain of and find the intersection with .
Tap for more steps...
Step 2.6.1.4.5.6.1
Find the domain of .
Tap for more steps...
Step 2.6.1.4.5.6.1.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 2.6.1.4.5.6.1.2
Solve for .
Tap for more steps...
Step 2.6.1.4.5.6.1.2.1
Simplify .
Tap for more steps...
Step 2.6.1.4.5.6.1.2.1.1
Expand using the FOIL Method.
Tap for more steps...
Step 2.6.1.4.5.6.1.2.1.1.1
Apply the distributive property.
Step 2.6.1.4.5.6.1.2.1.1.2
Apply the distributive property.
Step 2.6.1.4.5.6.1.2.1.1.3
Apply the distributive property.
Step 2.6.1.4.5.6.1.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 2.6.1.4.5.6.1.2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.6.1.4.5.6.1.2.1.2.1.1
Multiply by .
Step 2.6.1.4.5.6.1.2.1.2.1.2
Multiply by .
Step 2.6.1.4.5.6.1.2.1.2.1.3
Move to the left of .
Step 2.6.1.4.5.6.1.2.1.2.1.4
Rewrite using the commutative property of multiplication.
Step 2.6.1.4.5.6.1.2.1.2.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 2.6.1.4.5.6.1.2.1.2.1.5.1
Move .
Step 2.6.1.4.5.6.1.2.1.2.1.5.2
Multiply by .
Step 2.6.1.4.5.6.1.2.1.2.2
Add and .
Step 2.6.1.4.5.6.1.2.1.2.3
Add and .
Step 2.6.1.4.5.6.1.2.2
Subtract from both sides of the inequality.
Step 2.6.1.4.5.6.1.2.3
Divide each term in by and simplify.
Tap for more steps...
Step 2.6.1.4.5.6.1.2.3.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.6.1.4.5.6.1.2.3.2
Simplify the left side.
Tap for more steps...
Step 2.6.1.4.5.6.1.2.3.2.1
Dividing two negative values results in a positive value.
Step 2.6.1.4.5.6.1.2.3.2.2
Divide by .
Step 2.6.1.4.5.6.1.2.3.3
Simplify the right side.
Tap for more steps...
Step 2.6.1.4.5.6.1.2.3.3.1
Divide by .
Step 2.6.1.4.5.6.1.2.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Step 2.6.1.4.5.6.1.2.5
Simplify the equation.
Tap for more steps...
Step 2.6.1.4.5.6.1.2.5.1
Simplify the left side.
Tap for more steps...
Step 2.6.1.4.5.6.1.2.5.1.1
Pull terms out from under the radical.
Step 2.6.1.4.5.6.1.2.5.2
Simplify the right side.
Tap for more steps...
Step 2.6.1.4.5.6.1.2.5.2.1
Simplify .
Tap for more steps...
Step 2.6.1.4.5.6.1.2.5.2.1.1
Rewrite as .
Step 2.6.1.4.5.6.1.2.5.2.1.2
Pull terms out from under the radical.
Step 2.6.1.4.5.6.1.2.5.2.1.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 2.6.1.4.5.6.1.2.6
Write as a piecewise.
Tap for more steps...
Step 2.6.1.4.5.6.1.2.6.1
To find the interval for the first piece, find where the inside of the absolute value is non-negative.
Step 2.6.1.4.5.6.1.2.6.2
In the piece where is non-negative, remove the absolute value.
Step 2.6.1.4.5.6.1.2.6.3
To find the interval for the second piece, find where the inside of the absolute value is negative.
Step 2.6.1.4.5.6.1.2.6.4
In the piece where is negative, remove the absolute value and multiply by .
Step 2.6.1.4.5.6.1.2.6.5
Write as a piecewise.
Step 2.6.1.4.5.6.1.2.7
Find the intersection of and .
Step 2.6.1.4.5.6.1.2.8
Solve when .
Tap for more steps...
Step 2.6.1.4.5.6.1.2.8.1
Divide each term in by and simplify.
Tap for more steps...
Step 2.6.1.4.5.6.1.2.8.1.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.6.1.4.5.6.1.2.8.1.2
Simplify the left side.
Tap for more steps...
Step 2.6.1.4.5.6.1.2.8.1.2.1
Dividing two negative values results in a positive value.
Step 2.6.1.4.5.6.1.2.8.1.2.2
Divide by .
Step 2.6.1.4.5.6.1.2.8.1.3
Simplify the right side.
Tap for more steps...
Step 2.6.1.4.5.6.1.2.8.1.3.1
Divide by .
Step 2.6.1.4.5.6.1.2.8.2
Find the intersection of and .
Step 2.6.1.4.5.6.1.2.9
Find the union of the solutions.
Step 2.6.1.4.5.6.1.3
The domain is all values of that make the expression defined.
Step 2.6.1.4.5.6.2
Find the intersection of and .
Step 2.6.1.4.5.7
Write as a piecewise.
Step 2.6.1.4.6
Find the intersection of and .
No solution
Step 2.6.1.4.7
Solve when .
Tap for more steps...
Step 2.6.1.4.7.1
Divide each term in by and simplify.
Tap for more steps...
Step 2.6.1.4.7.1.1
Divide each term in by . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.
Step 2.6.1.4.7.1.2
Simplify the left side.
Tap for more steps...
Step 2.6.1.4.7.1.2.1
Dividing two negative values results in a positive value.
Step 2.6.1.4.7.1.2.2
Divide by .
Step 2.6.1.4.7.1.3
Simplify the right side.
Tap for more steps...
Step 2.6.1.4.7.1.3.1
Move the negative one from the denominator of .
Step 2.6.1.4.7.1.3.2
Rewrite as .
Step 2.6.1.4.7.2
Find the intersection of and .
Step 2.6.1.4.8
Find the union of the solutions.
Step 2.6.2
Find the intersection of and .
Step 2.7
Find the union of the solutions.
Step 3
Set the denominator in equal to to find where the expression is undefined.
Step 4
The domain is all values of that make the expression defined.
Interval Notation:
Set-Builder Notation:
Step 5