Enter a problem...
Precalculus Examples
Step 1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 2
Step 2.1
Convert the inequality to an equation.
Step 2.2
Factor the left side of the equation.
Step 2.2.1
Factor out of .
Step 2.2.1.1
Factor out of .
Step 2.2.1.2
Factor out of .
Step 2.2.1.3
Rewrite as .
Step 2.2.1.4
Factor out of .
Step 2.2.1.5
Factor out of .
Step 2.2.2
Factor.
Step 2.2.2.1
Factor using the AC method.
Step 2.2.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 2.2.2.1.2
Write the factored form using these integers.
Step 2.2.2.2
Remove unnecessary parentheses.
Step 2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4
Set equal to and solve for .
Step 2.4.1
Set equal to .
Step 2.4.2
Add to both sides of the equation.
Step 2.5
Set equal to and solve for .
Step 2.5.1
Set equal to .
Step 2.5.2
Subtract from both sides of the equation.
Step 2.6
The final solution is all the values that make true.
Step 2.7
Use each root to create test intervals.
Step 2.8
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Step 2.8.1
Test a value on the interval to see if it makes the inequality true.
Step 2.8.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 2.8.1.2
Replace with in the original inequality.
Step 2.8.1.3
The left side is less than the right side , which means that the given statement is false.
False
False
Step 2.8.2
Test a value on the interval to see if it makes the inequality true.
Step 2.8.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 2.8.2.2
Replace with in the original inequality.
Step 2.8.2.3
The left side is greater than the right side , which means that the given statement is always true.
True
True
Step 2.8.3
Test a value on the interval to see if it makes the inequality true.
Step 2.8.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 2.8.3.2
Replace with in the original inequality.
Step 2.8.3.3
The left side is less than the right side , which means that the given statement is false.
False
False
Step 2.8.4
Compare the intervals to determine which ones satisfy the original inequality.
False
True
False
False
True
False
Step 2.9
The solution consists of all of the true intervals.
Step 3
Set the denominator in equal to to find where the expression is undefined.
Step 4
Step 4.1
To remove the radical on the left side of the equation, square both sides of the equation.
Step 4.2
Simplify each side of the equation.
Step 4.2.1
Use to rewrite as .
Step 4.2.2
Simplify the left side.
Step 4.2.2.1
Simplify .
Step 4.2.2.1.1
Multiply the exponents in .
Step 4.2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 4.2.2.1.1.2
Cancel the common factor of .
Step 4.2.2.1.1.2.1
Cancel the common factor.
Step 4.2.2.1.1.2.2
Rewrite the expression.
Step 4.2.2.1.2
Simplify.
Step 4.2.3
Simplify the right side.
Step 4.2.3.1
Raising to any positive power yields .
Step 4.3
Solve for .
Step 4.3.1
Factor the left side of the equation.
Step 4.3.1.1
Factor out of .
Step 4.3.1.1.1
Factor out of .
Step 4.3.1.1.2
Factor out of .
Step 4.3.1.1.3
Rewrite as .
Step 4.3.1.1.4
Factor out of .
Step 4.3.1.1.5
Factor out of .
Step 4.3.1.2
Factor.
Step 4.3.1.2.1
Factor using the AC method.
Step 4.3.1.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 4.3.1.2.1.2
Write the factored form using these integers.
Step 4.3.1.2.2
Remove unnecessary parentheses.
Step 4.3.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.3.3
Set equal to and solve for .
Step 4.3.3.1
Set equal to .
Step 4.3.3.2
Add to both sides of the equation.
Step 4.3.4
Set equal to and solve for .
Step 4.3.4.1
Set equal to .
Step 4.3.4.2
Subtract from both sides of the equation.
Step 4.3.5
The final solution is all the values that make true.
Step 5
The domain is all values of that make the expression defined.
Interval Notation:
Set-Builder Notation:
Step 6