Precalculus Examples

Find the Average Rate of Change h(x)=1/8x^3-x^2
Step 1
Consider the difference quotient formula.
Step 2
Find the components of the definition.
Tap for more steps...
Step 2.1
Evaluate the function at .
Tap for more steps...
Step 2.1.1
Replace the variable with in the expression.
Step 2.1.2
Simplify the result.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Use the Binomial Theorem.
Step 2.1.2.1.2
Apply the distributive property.
Step 2.1.2.1.3
Simplify.
Tap for more steps...
Step 2.1.2.1.3.1
Combine and .
Step 2.1.2.1.3.2
Multiply .
Tap for more steps...
Step 2.1.2.1.3.2.1
Combine and .
Step 2.1.2.1.3.2.2
Combine and .
Step 2.1.2.1.3.2.3
Combine and .
Step 2.1.2.1.3.3
Multiply .
Tap for more steps...
Step 2.1.2.1.3.3.1
Combine and .
Step 2.1.2.1.3.3.2
Combine and .
Step 2.1.2.1.3.3.3
Combine and .
Step 2.1.2.1.3.4
Combine and .
Step 2.1.2.1.4
Simplify each term.
Tap for more steps...
Step 2.1.2.1.4.1
Move to the left of .
Step 2.1.2.1.4.2
Move to the left of .
Step 2.1.2.1.5
Rewrite as .
Step 2.1.2.1.6
Expand using the FOIL Method.
Tap for more steps...
Step 2.1.2.1.6.1
Apply the distributive property.
Step 2.1.2.1.6.2
Apply the distributive property.
Step 2.1.2.1.6.3
Apply the distributive property.
Step 2.1.2.1.7
Simplify and combine like terms.
Tap for more steps...
Step 2.1.2.1.7.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.7.1.1
Multiply by .
Step 2.1.2.1.7.1.2
Multiply by .
Step 2.1.2.1.7.2
Add and .
Tap for more steps...
Step 2.1.2.1.7.2.1
Reorder and .
Step 2.1.2.1.7.2.2
Add and .
Step 2.1.2.1.8
Apply the distributive property.
Step 2.1.2.1.9
Multiply by .
Step 2.1.2.2
The final answer is .
Step 2.2
Reorder.
Tap for more steps...
Step 2.2.1
Move .
Step 2.2.2
Move .
Step 2.2.3
Move .
Step 2.2.4
Move .
Step 2.2.5
Move .
Step 2.2.6
Move .
Step 2.2.7
Reorder and .
Step 2.3
Find the components of the definition.
Step 3
Plug in the components.
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Apply the distributive property.
Step 4.1.2
Multiply .
Tap for more steps...
Step 4.1.2.1
Multiply by .
Step 4.1.2.2
Multiply by .
Step 4.1.3
Subtract from .
Step 4.1.4
Add and .
Step 4.1.5
Add and .
Step 4.1.6
Add and .
Step 4.1.7
Combine the numerators over the common denominator.
Step 4.1.8
Factor out of .
Tap for more steps...
Step 4.1.8.1
Factor out of .
Step 4.1.8.2
Factor out of .
Step 4.1.8.3
Factor out of .
Step 4.1.9
Combine the numerators over the common denominator.
Step 4.1.10
Simplify the numerator.
Tap for more steps...
Step 4.1.10.1
Factor out of .
Tap for more steps...
Step 4.1.10.1.1
Factor out of .
Step 4.1.10.1.2
Factor out of .
Step 4.1.10.1.3
Factor out of .
Step 4.1.10.2
Apply the distributive property.
Step 4.1.10.3
Multiply by .
Step 4.1.10.4
Rewrite using the commutative property of multiplication.
Step 4.1.11
To write as a fraction with a common denominator, multiply by .
Step 4.1.12
Combine and .
Step 4.1.13
Combine the numerators over the common denominator.
Step 4.1.14
Simplify the numerator.
Tap for more steps...
Step 4.1.14.1
Factor out of .
Tap for more steps...
Step 4.1.14.1.1
Factor out of .
Step 4.1.14.1.2
Factor out of .
Step 4.1.14.2
Multiply by .
Step 4.1.15
To write as a fraction with a common denominator, multiply by .
Step 4.1.16
Combine and .
Step 4.1.17
Combine the numerators over the common denominator.
Step 4.1.18
Simplify the numerator.
Tap for more steps...
Step 4.1.18.1
Factor out of .
Tap for more steps...
Step 4.1.18.1.1
Factor out of .
Step 4.1.18.1.2
Factor out of .
Step 4.1.18.2
Multiply by .
Step 4.2
Multiply the numerator by the reciprocal of the denominator.
Step 4.3
Combine.
Step 4.4
Cancel the common factor of .
Tap for more steps...
Step 4.4.1
Cancel the common factor.
Step 4.4.2
Rewrite the expression.
Step 4.5
Multiply by .
Step 5