Enter a problem...
Pre-Algebra Examples
Step 1
To divide by a fraction, multiply by its reciprocal.
Step 2
Step 2.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 2.1.1
Factor out of .
Step 2.1.2
Rewrite as plus
Step 2.1.3
Apply the distributive property.
Step 2.1.4
Multiply by .
Step 2.2
Factor out the greatest common factor from each group.
Step 2.2.1
Group the first two terms and the last two terms.
Step 2.2.2
Factor out the greatest common factor (GCF) from each group.
Step 2.3
Factor the polynomial by factoring out the greatest common factor, .
Step 3
Step 3.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 3.2
Write the factored form using these integers.
Step 4
Step 4.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 4.1.1
Factor out of .
Step 4.1.2
Rewrite as plus
Step 4.1.3
Apply the distributive property.
Step 4.2
Factor out the greatest common factor from each group.
Step 4.2.1
Group the first two terms and the last two terms.
Step 4.2.2
Factor out the greatest common factor (GCF) from each group.
Step 4.3
Factor the polynomial by factoring out the greatest common factor, .
Step 5
Step 5.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 5.2
Write the factored form using these integers.
Step 6
Step 6.1
Factor out of .
Step 6.2
Cancel the common factor.
Step 6.3
Rewrite the expression.
Step 7
Step 7.1
Factor out of .
Step 7.2
Cancel the common factor.
Step 7.3
Rewrite the expression.
Step 8
Multiply by .
Step 9
Raise to the power of .
Step 10
Raise to the power of .
Step 11
Use the power rule to combine exponents.
Step 12
Add and .
Step 13
Step 13.1
Apply the distributive property.
Step 13.2
Apply the distributive property.
Step 13.3
Apply the distributive property.
Step 14
Step 14.1
Reorder the factors in the terms and .
Step 14.2
Add and .
Step 14.3
Add and .
Step 15
Step 15.1
Rewrite using the commutative property of multiplication.
Step 15.2
Multiply by by adding the exponents.
Step 15.2.1
Move .
Step 15.2.2
Multiply by .
Step 15.3
Multiply by .
Step 15.4
Multiply by .
Step 16
Split the fraction into two fractions.
Step 17
Move the negative in front of the fraction.