Enter a problem...
Pre-Algebra Examples
Step 1
To divide by a fraction, multiply by its reciprocal.
Step 2
Step 2.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 2.2
Write the factored form using these integers.
Step 3
Step 3.1
Factor out of .
Step 3.1.1
Factor out of .
Step 3.1.2
Factor out of .
Step 3.1.3
Factor out of .
Step 3.2
Rewrite as .
Step 3.3
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 4
Step 4.1
Cancel the common factor.
Step 4.2
Rewrite the expression.
Step 5
Step 5.1
Rewrite as .
Step 5.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 5.3
Rewrite the polynomial.
Step 5.4
Factor using the perfect square trinomial rule , where and .
Step 6
Step 6.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 6.2
Write the factored form using these integers.
Step 7
Step 7.1
Cancel the common factor.
Step 7.2
Rewrite the expression.
Step 8
Step 8.1
Factor out of .
Step 8.2
Factor out of .
Step 8.3
Cancel the common factor.
Step 8.4
Rewrite the expression.
Step 9
Multiply by .
Step 10
Step 10.1
Cancel the common factor.
Step 10.2
Rewrite the expression.
Step 11
The result can be shown in multiple forms.
Exact Form:
Decimal Form: