Enter a problem...
Pre-Algebra Examples
Step 1
Step 1.1
Apply the distributive property.
Step 1.2
Apply the distributive property.
Step 1.3
Apply the distributive property.
Step 1.4
Apply the distributive property.
Step 1.5
Remove parentheses.
Step 1.6
Reorder and .
Step 1.7
Remove parentheses.
Step 1.8
Reorder and .
Step 1.9
Raise to the power of .
Step 1.10
Use the power rule to combine exponents.
Step 1.11
Add and .
Step 1.12
Raise to the power of .
Step 1.13
Raise to the power of .
Step 1.14
Use the power rule to combine exponents.
Step 1.15
Add and .
Step 1.16
Multiply by .
Step 1.17
Add and .
Step 1.18
Subtract from .
Step 1.19
Raise to the power of .
Step 1.20
Raise to the power of .
Step 1.21
Use the power rule to combine exponents.
Step 1.22
Add and .
Step 1.23
Move .
Step 1.24
Subtract from .
Step 2
Step 2.1
Apply the distributive property.
Step 2.2
Apply the distributive property.
Step 2.3
Apply the distributive property.
Step 2.4
Reorder and .
Step 2.5
Raise to the power of .
Step 2.6
Raise to the power of .
Step 2.7
Use the power rule to combine exponents.
Step 2.8
Add and .
Step 2.9
Multiply by .
Step 2.10
Add and .
Step 2.11
Subtract from .
Step 3
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | - | + | - | + |
Step 4
Divide the highest order term in the dividend by the highest order term in divisor .
+ | - | + | - | + |
Step 5
Multiply the new quotient term by the divisor.
+ | - | + | - | + | |||||||||
+ | + | - |
Step 6
The expression needs to be subtracted from the dividend, so change all the signs in
+ | - | + | - | + | |||||||||
- | - | + |
Step 7
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | - | + | - | + | |||||||||
- | - | + | |||||||||||
+ | - |
Step 8
Pull the next terms from the original dividend down into the current dividend.
+ | - | + | - | + | |||||||||
- | - | + | |||||||||||
+ | - | + |
Step 9
Divide the highest order term in the dividend by the highest order term in divisor .
+ | |||||||||||||
+ | - | + | - | + | |||||||||
- | - | + | |||||||||||
+ | - | + |
Step 10
Multiply the new quotient term by the divisor.
+ | |||||||||||||
+ | - | + | - | + | |||||||||
- | - | + | |||||||||||
+ | - | + | |||||||||||
+ | + | - |
Step 11
The expression needs to be subtracted from the dividend, so change all the signs in
+ | |||||||||||||
+ | - | + | - | + | |||||||||
- | - | + | |||||||||||
+ | - | + | |||||||||||
- | - | + |
Step 12
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | |||||||||||||
+ | - | + | - | + | |||||||||
- | - | + | |||||||||||
+ | - | + | |||||||||||
- | - | + | |||||||||||
- | + |
Step 13
The final answer is the quotient plus the remainder over the divisor.