Pre-Algebra Examples

Graph |(1.4x^2-2x+9.3)-(7.5x^2-3.3+10)+(1.5x-6)|
Step 1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
Set-Builder Notation:
Step 2
For each value, there is one value. Select a few values from the domain. It would be more useful to select the values so that they are around the value of the absolute value vertex.
Tap for more steps...
Step 2.1
Substitute the value into . In this case, the point is .
Tap for more steps...
Step 2.1.1
Replace the variable with in the expression.
Step 2.1.2
Simplify the result.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Raise to the power of .
Step 2.1.2.1.2
Multiply by .
Step 2.1.2.1.3
Multiply by .
Step 2.1.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.1.2.2.1
Add and .
Step 2.1.2.2.2
Subtract from .
Step 2.1.2.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 2.1.2.4
The final answer is .
Step 2.2
Substitute the value into . In this case, the point is .
Tap for more steps...
Step 2.2.1
Replace the variable with in the expression.
Step 2.2.2
Simplify the result.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Raise to the power of .
Step 2.2.2.1.2
Multiply by .
Step 2.2.2.1.3
Multiply by .
Step 2.2.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.2.2.2.1
Add and .
Step 2.2.2.2.2
Subtract from .
Step 2.2.2.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 2.2.2.4
The final answer is .
Step 2.3
Substitute the value into . In this case, the point is .
Tap for more steps...
Step 2.3.1
Replace the variable with in the expression.
Step 2.3.2
Simplify the result.
Tap for more steps...
Step 2.3.2.1
Simplify each term.
Tap for more steps...
Step 2.3.2.1.1
Raising to any positive power yields .
Step 2.3.2.1.2
Multiply by .
Step 2.3.2.1.3
Multiply by .
Step 2.3.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.3.2.2.1
Add and .
Step 2.3.2.2.2
Subtract from .
Step 2.3.2.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 2.3.2.4
The final answer is .
Step 2.4
Substitute the value into . In this case, the point is .
Tap for more steps...
Step 2.4.1
Replace the variable with in the expression.
Step 2.4.2
Simplify the result.
Tap for more steps...
Step 2.4.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.1.1
One to any power is one.
Step 2.4.2.1.2
Multiply by .
Step 2.4.2.1.3
Multiply by .
Step 2.4.2.2
Simplify by subtracting numbers.
Tap for more steps...
Step 2.4.2.2.1
Subtract from .
Step 2.4.2.2.2
Subtract from .
Step 2.4.2.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 2.4.2.4
The final answer is .
Step 2.5
The absolute value can be graphed using the points around the vertex
Step 3