Enter a problem...
Pre-Algebra Examples
Step 1
Step 1.1
To find the coordinate of the vertex, set the inside of the absolute value equal to . In this case, .
Step 1.2
Solve the equation to find the coordinate for the absolute value vertex.
Step 1.2.1
Add to both sides of the equation.
Step 1.2.2
Divide each term in by and simplify.
Step 1.2.2.1
Divide each term in by .
Step 1.2.2.2
Simplify the left side.
Step 1.2.2.2.1
Cancel the common factor of .
Step 1.2.2.2.1.1
Cancel the common factor.
Step 1.2.2.2.1.2
Divide by .
Step 1.2.2.3
Simplify the right side.
Step 1.2.2.3.1
Cancel the common factor of and .
Step 1.2.2.3.1.1
Factor out of .
Step 1.2.2.3.1.2
Cancel the common factors.
Step 1.2.2.3.1.2.1
Factor out of .
Step 1.2.2.3.1.2.2
Cancel the common factor.
Step 1.2.2.3.1.2.3
Rewrite the expression.
Step 1.3
Replace the variable with in the expression.
Step 1.4
Simplify .
Step 1.4.1
Cancel the common factor of .
Step 1.4.1.1
Factor out of .
Step 1.4.1.2
Cancel the common factor.
Step 1.4.1.3
Rewrite the expression.
Step 1.4.2
Subtract from .
Step 1.4.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 1.5
The absolute value vertex is .
Step 2
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
Set-Builder Notation:
Step 3
Step 3.1
Substitute the value into . In this case, the point is .
Step 3.1.1
Replace the variable with in the expression.
Step 3.1.2
Simplify the result.
Step 3.1.2.1
Multiply by .
Step 3.1.2.2
Subtract from .
Step 3.1.2.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 3.1.2.4
The final answer is .
Step 3.2
Substitute the value into . In this case, the point is .
Step 3.2.1
Replace the variable with in the expression.
Step 3.2.2
Simplify the result.
Step 3.2.2.1
Multiply by .
Step 3.2.2.2
Subtract from .
Step 3.2.2.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 3.2.2.4
The final answer is .
Step 3.3
Substitute the value into . In this case, the point is .
Step 3.3.1
Replace the variable with in the expression.
Step 3.3.2
Simplify the result.
Step 3.3.2.1
Multiply by .
Step 3.3.2.2
Subtract from .
Step 3.3.2.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 3.3.2.4
The final answer is .
Step 3.4
The absolute value can be graphed using the points around the vertex
Step 4